Abstract
Motivated by symbolic dynamics and algebraic geometry over finite fields, we define cyclic languages and the zeta function of a language. The main result is that the zeta function of a cyclic language which is recognizable by a finite automaton is rational.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M.-P. Béal, Personal communication (1987).
J. Berstel, D. Perrin, The theory of codes, Acad. Press (1986).
J. Berstel, C. Reutenauer, Rational series and their languages, Springer-Verlag (to appear).
R. Bowen, O. Lanford, Zeta functions of restrictions of the shift transformation, Proc. Sympos. Pure Maths, 14 (1970) 43–50, A.M.S.
N. Chomsky, M.P. Schützenberger, The algebraic theory of context-free languages, in: P. Braffort and D. Hirschberg (ed.), Computer Programming and formal systems, (1963) 118–161, North Holland.
E.M. Coven, M.E. Paul, Sofic systems, Israel J. Maths 20 (1975) 165–177.
B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960) 631–648.
S. Eilenberg, Automata, languages and machines, vol. A, Acad. Press (1974).
S. W. Golomb, Irreducible polynomials, synchronization codes, primitive necklaces and the cyclotomic algebra, Univ. of North Carolina Monograph Series in Proba. and Stat. 4 (1967) 358–370.
R. Hartshorne, Algebraic geometry, Springer-Verlag 1977.
K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag (1982).
N. Koblitz, P-adic numbers, p-adic analysis and zeta functions, Springer-Verlag 1984.
G. Lallement, Semigroups and combinatorial applications, John Wiley 1979.
R. Lidl, H. Niederreiter, Finite fields, Encycl. of Maths (1983), Addison Wesley.
M. Lothaire, Combinatorics on words, Encycl. of Maths., Addison Wesley (1983).
C. Reutenauer, Séries formelles et algèbres syntaxiques, J. Algebra 66 (1980) 448–483.
C. Reutenauer, Semisimplicity of the algebra associated to a biprefix code, Semigroup Forum 23 (1981) 327–342.
C. Reutenauer, Ensembles libres de chemins dans un graphe, Bull. Soc. Math. France 114 (1986) 135–152.
C. Reutenauer, Mots circulaires et polynômes irréductibles, to appear.
M.P. Schützenberger, Sur certains sous-monoïdes libres, Bull. Soc. Math. France 93 (1965) 209–223.
B. Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973) 462–474.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berstel, J., Reutenauer, C. (1988). Zeta functions of recognizable languages. In: Lepistö, T., Salomaa, A. (eds) Automata, Languages and Programming. ICALP 1988. Lecture Notes in Computer Science, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19488-6_109
Download citation
DOI: https://doi.org/10.1007/3-540-19488-6_109
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19488-0
Online ISBN: 978-3-540-39291-0
eBook Packages: Springer Book Archive