Abstract
The development of an effective central model of action selection has already been reviewed in previous work. The central model has been set to resolve a foraging task with the use of heterogeneous behavioral modules. In contrast to collecting/depositing modules that have been hand-coded, modules related to exploring follow an evolutionary approach. However, in this paper we focus on the use of genetic algorithms for evolving the weights related to calculating the urgency for a behavior to be selected. Therefore, we aim to reduce the number of decisions made by a human designer when developing the neural substratum of a central selection mechanism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Maes, P.: How to do the right thing. Connection Science Journal 1(3), 291–323 (1989)
Nolfi, S.: Evolving non-trivial behaviors on real robots: A garbage collection robot. Robotics and automation system 22, 187–198 (1997)
Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to evolve autonomous robots: Different approaches in evolutionary robotics. In: Proceedings of the International Conference Artificial Life IV, MIT Press, Cambridge MA (1994)
Seth, A.K.: Evolving action selection and selective attention without actions, attention, or selection. In: From animals to animats 5: Proceedings of the Fifth International Conference on the Simulation of Adaptive Behavior, pp. 139–147. MIT Press, Cambridge (1998)
Kyong-Joong Kim, S.-B.C.: Robot action selection for higher behaviors with cam-brain modules. In: Proceedings of the 32nd ISR (International Symposium in Robotics) (2001)
Yamauchi, B.B.R.: Integrating reactive, sequential, and learning behavior using dynamical neural networks. In: From Animals to Animats 3, Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior, MIT Press/Bradford Books (1994)
Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)
Floreano, D., Mondana, F.: Evolution of homing navigation in a real mobile robot. IEEE Transactions on Systems, Man and Cybernetics 26(3), 396–407 (1996)
Nolfi, S., Floreano, D.: Evolutionary robotics. MIT Press, Cambridge (2000)
Santos, J., Duro, R.: Artificial evolution and autonomus robotics (in spanish). Ra-Ma Editorial (2005)
Mondana, F., Franzi, E., I.P.: Mobile robot miniaturisation: A tool for investigating in control algorithms. In: Proceedings of the 3rd International Symposium on Experimental Robotics, pp. 501–513. Springer, Heidelberg (1993)
Webots, Commercial Mobile Robot Simulation Software (2006), http://www.cyberbotics.com
Floreano, D., Mondana, F.: Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. In: From Animals to Animats III: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, MIT Press-Bradford Books, Cambridge (1994)
Bajaj, D., Ang Jr., M.H.: An incremental approach in evolving robot behavior. In: The Sixth International Conference on Control, Automation, Robotics and Vision (ICARCV 2000) (2000)
Montes González, F.M., Marín Hernández, A., Ríos Figueroa, H.: An effective robotic model of action selection. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 123–132. Springer, Heidelberg (2006)
Nolfi, S.: Using emergent modularity to develop control systems for mobile robots. Adaptive Behavior 5(3/4), 343–363 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Montes-González, F., Reyes, J.S., Figueroa, H.R. (2006). Integration of Evolution with a Robot Action Selection Model. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_111
Download citation
DOI: https://doi.org/10.1007/11925231_111
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49026-5
Online ISBN: 978-3-540-49058-6
eBook Packages: Computer ScienceComputer Science (R0)