iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11925231_111
Integration of Evolution with a Robot Action Selection Model | SpringerLink
Skip to main content

Integration of Evolution with a Robot Action Selection Model

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

Abstract

The development of an effective central model of action selection has already been reviewed in previous work. The central model has been set to resolve a foraging task with the use of heterogeneous behavioral modules. In contrast to collecting/depositing modules that have been hand-coded, modules related to exploring follow an evolutionary approach. However, in this paper we focus on the use of genetic algorithms for evolving the weights related to calculating the urgency for a behavior to be selected. Therefore, we aim to reduce the number of decisions made by a human designer when developing the neural substratum of a central selection mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maes, P.: How to do the right thing. Connection Science Journal 1(3), 291–323 (1989)

    Article  Google Scholar 

  2. Nolfi, S.: Evolving non-trivial behaviors on real robots: A garbage collection robot. Robotics and automation system 22, 187–198 (1997)

    Article  Google Scholar 

  3. Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to evolve autonomous robots: Different approaches in evolutionary robotics. In: Proceedings of the International Conference Artificial Life IV, MIT Press, Cambridge MA (1994)

    Google Scholar 

  4. Seth, A.K.: Evolving action selection and selective attention without actions, attention, or selection. In: From animals to animats 5: Proceedings of the Fifth International Conference on the Simulation of Adaptive Behavior, pp. 139–147. MIT Press, Cambridge (1998)

    Google Scholar 

  5. Kyong-Joong Kim, S.-B.C.: Robot action selection for higher behaviors with cam-brain modules. In: Proceedings of the 32nd ISR (International Symposium in Robotics) (2001)

    Google Scholar 

  6. Yamauchi, B.B.R.: Integrating reactive, sequential, and learning behavior using dynamical neural networks. In: From Animals to Animats 3, Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior, MIT Press/Bradford Books (1994)

    Google Scholar 

  7. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)

    Google Scholar 

  8. Floreano, D., Mondana, F.: Evolution of homing navigation in a real mobile robot. IEEE Transactions on Systems, Man and Cybernetics 26(3), 396–407 (1996)

    Article  Google Scholar 

  9. Nolfi, S., Floreano, D.: Evolutionary robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Santos, J., Duro, R.: Artificial evolution and autonomus robotics (in spanish). Ra-Ma Editorial (2005)

    Google Scholar 

  11. Mondana, F., Franzi, E., I.P.: Mobile robot miniaturisation: A tool for investigating in control algorithms. In: Proceedings of the 3rd International Symposium on Experimental Robotics, pp. 501–513. Springer, Heidelberg (1993)

    Google Scholar 

  12. Webots, Commercial Mobile Robot Simulation Software (2006), http://www.cyberbotics.com

  13. Floreano, D., Mondana, F.: Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. In: From Animals to Animats III: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, MIT Press-Bradford Books, Cambridge (1994)

    Google Scholar 

  14. Bajaj, D., Ang Jr., M.H.: An incremental approach in evolving robot behavior. In: The Sixth International Conference on Control, Automation, Robotics and Vision (ICARCV 2000) (2000)

    Google Scholar 

  15. Montes González, F.M., Marín Hernández, A., Ríos Figueroa, H.: An effective robotic model of action selection. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 123–132. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Nolfi, S.: Using emergent modularity to develop control systems for mobile robots. Adaptive Behavior 5(3/4), 343–363 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montes-González, F., Reyes, J.S., Figueroa, H.R. (2006). Integration of Evolution with a Robot Action Selection Model. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_111

Download citation

  • DOI: https://doi.org/10.1007/11925231_111

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics