iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11908739_7
Short Traceable Signatures Based on Bilinear Pairings | SpringerLink
Skip to main content

Short Traceable Signatures Based on Bilinear Pairings

  • Conference paper
Advances in Information and Computer Security (IWSEC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4266))

Included in the following conference series:

Abstract

We propose a short traceable signature scheme based on bilinear pairings. Traceable signatures, introduced by Kiayias, Tsiounis and Yung (KTY), support an extended set of fairness mechanisms (mechanisms for anonymity management and revocation) when compared with the traditional group signatures. Designing short signatures based on the power of pairing has been a current activity of cryptographic research, and is especially needed for long constructions like that of traceable signatures. The size of a signature in our scheme is less than one third of the size in the KTY scheme and about 40% of the size of the pairing based traceable signature (which has been the shortest till today). The security of our scheme is based on the Strong Diffie-Hellman assumption and the Decision Linear Diffie-Hellman assumption. We prove the security of our system in random oracle model using the security model given by KTY.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdalla, M., An, J., Bellare, M., Namprepre, C.: From identification to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 418. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Ateniese, G., Camenisch, J., Hohenberger, S., Medeiros, B.: Practical Group Signatures without Random Oracles. Cryptology ePrint Archive, Report 2005/385, http://eprint.iacr.org/

  3. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 255. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 514. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Bellare, M., Micciancio, D., Warinshci, B.: Foundations of group signatures: Formal definitions, siimplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

    Google Scholar 

  8. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. Cryptology ePrint Archive, Report 2004/077, http://eprint.iacr.org/

  9. Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. Cryptology ePrint Archive, Report 2005/381, http://eprint.iacr.org/

  10. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)

    Google Scholar 

  11. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  12. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440. Springer, Heidelberg (1999)

    Google Scholar 

  13. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Kiayias, A., Yung, M.: Group signatures: Efficient constructions and annymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076, http://eprint.iacr.org/

  15. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals E84-A(5), 1234–1243 (2001)

    Google Scholar 

  16. Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-free Group Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  18. Rubin, K., Silverberg, A.: Supersingular Abelian varieties in cryptology. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 336. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, S.G., Park, K., Yung, M. (2006). Short Traceable Signatures Based on Bilinear Pairings. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds) Advances in Information and Computer Security. IWSEC 2006. Lecture Notes in Computer Science, vol 4266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908739_7

Download citation

  • DOI: https://doi.org/10.1007/11908739_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47699-3

  • Online ISBN: 978-3-540-47700-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics