iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11901914_6
A Probabilistic Learning Approach for Counterexample Guided Abstraction Refinement | SpringerLink
Skip to main content

A Probabilistic Learning Approach for Counterexample Guided Abstraction Refinement

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4218))

Abstract

The paper presents a novel probabilistic learning approach to state separation problem which occurs in the counterexample guided abstraction refinement. The method is based on the sample learning technique, evolutionary algorithm and effective probabilistic heuristics. Compared with the previous work by the sampling decision tree learning solver, the proposed method outperforms 2 to 4 orders of magnitude faster and the size of the separation set is 76% smaller on average.

This work was supported in part by the Chinese National 973 Plan under grant No. 2004CB719406 and NSF of China under grant No. 60553002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Clarke, E.M., Gupta, A., Kukula, J.H., Strichman, O.: SAT based abstraction-refinement using ILP and machine learning techniques. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 265–279. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Clarke, E., Gupta, A., Strichman, O.: SAT based counterexample-guided abstraction-refinement. IEEE Transactions on Computer Aided Design 23(7), 1113–1123 (2004)

    Article  Google Scholar 

  4. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Symposium on Principles of Programming Languages, pp. 58–70 (2002)

    Google Scholar 

  5. Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.Y.: Multiple-counterexample guided iterative abstraction refinement: an industrial evaluation. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 176–191. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 112–124. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Govindaraju, S.G., Dill, D.L.: Counterexample-guided choice of projections in approximate symbolic model checking. In: ICCAD, pp. 115–119 (2000)

    Google Scholar 

  8. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using SAT-based BMC with proof analysis. In: ICCAD, pp. 416–423 (2003)

    Google Scholar 

  10. Wang, C., Jin, H., Hachtel, G.D., Somenzi, F.: Refining the SAT decision ordering for bounded model checking. In: DAC, pp. 535–538 (2004)

    Google Scholar 

  11. Dumitrescu, D., Lazzerini, B., Jain, L., Dumitrescu, A.: Evolutionary Computation. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  12. Beasley, J., Chu, P.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94, 392–404 (1996)

    Article  MATH  Google Scholar 

  13. Sen, S.: Minimal cost set covering using probabilistic methods. In: Proceedings of the 1993 ACM/SIGAPP symposium on Applied computing, Indianapolis, Indiana, United States, pp. 157–164. ACM Press, New York (1993)

    Chapter  Google Scholar 

  14. Aickelin, U.: An indirect genetic algorithm for set covering problems. Journal of the Operational Research Society 53(10), 1118–1126 (2002)

    Article  MATH  Google Scholar 

  15. Marchiori, E., Steenbeek, A.: An evolutionary algorithm for large scale set covering problems with application to airline crew scheduling. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 367–381. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms, San Mateo, California, USA, pp. 2–9. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  17. Spears, W.M., De Jong, K.A.: On the virtues of parameterized uniform crossover. In: Belew, R., Booker, L. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, CA, pp. 230–236. Morgan Kaufman, San Francisco (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, F., Song, X., Gu, M., Sun, J. (2006). A Probabilistic Learning Approach for Counterexample Guided Abstraction Refinement. In: Graf, S., Zhang, W. (eds) Automated Technology for Verification and Analysis. ATVA 2006. Lecture Notes in Computer Science, vol 4218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901914_6

Download citation

  • DOI: https://doi.org/10.1007/11901914_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47237-7

  • Online ISBN: 978-3-540-47238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics