iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11881599_8
An Algorithm for High-Dimensional Traffic Data Clustering | SpringerLink
Skip to main content

An Algorithm for High-Dimensional Traffic Data Clustering

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4223))

Included in the following conference series:

Abstract

High-dimensional fuzzy clustering may converge to a local optimum that is significantly inferior to the global optimal partition. In this paper, a two-stage fuzzy clustering method is proposed. In the first stage, clustering is applied on the compact data that is obtained by dimensionality reduction from the full-dimensional data. The optimal partition identified from the compact data is then used as the initial partition in the second stage clustering based on full-dimensional data, thus effectively reduces the possibility of local optimum. It is found that the proposed two-stage clustering method can generally avoid local optimum without computation overhead. The proposed method has been applied to identify optimal day groups for traffic profiling using operational traffic data. The identified day groups are found to be intuitively reasonable and meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  3. Hand, D.J., Krzanowski, W.J.: Optimising k-means Clustering Results with Standard Software Packages. Computational Statistics & Data Analysis 49(4), 969–973 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. Journal of Cybernetics 3, 32–57 (1974)

    Article  Google Scholar 

  5. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  6. Selim, S.Z., Ismail, M.A.: K-means Type Algorithms: A Generalised Convergence Theorem and Characterisation of Local Optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(1), 81–87 (1984)

    Article  MATH  Google Scholar 

  7. Pollard, D.: A Central Limit Theorem for k-Means Algorithm. Annals of Probability 10, 919–926 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Murthy, C.A., Chowdhury, N.: In Search of Optimal Clusters using Genetic Algorithms. Pattern Recognition Letters 17, 825–832 (1996)

    Article  Google Scholar 

  9. Jones, D., Beltramo, M.A.: Solving Partitioning Problems with Genetic Algorithms. In: Proceedings of Fourth International Conference of Genetic Algorithms, pp. 442–449 (1991)

    Google Scholar 

  10. Laszlo, M., Mukherjee, S.: A Genetic Algorithm Using Hyper-Quadtrees for Lowdimensional K-means clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 533–543 (2006)

    Article  Google Scholar 

  11. Vanloan, C.F.: Generalizing Singular Value Decomposition. SIAM Journal on Numerical Analysis 13(1), 76–83 (1976)

    Article  MathSciNet  Google Scholar 

  12. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast similarity search in large time series databases. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 122–133. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K., Suel, T.: Optimal Histograms with Quality Guarantees. In: Proceedings of the 24th VLDB Conference, New York, USA (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, P., McDonald, M. (2006). An Algorithm for High-Dimensional Traffic Data Clustering. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_8

Download citation

  • DOI: https://doi.org/10.1007/11881599_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45916-3

  • Online ISBN: 978-3-540-45917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics