Abstract
In this paper, we propose a hybrid architecture combining radial basis function network (RBFN) and Principal Component Analysis (PCA) re-constructure model to perform facial expression recognition from static images. The resultant framework is a two stages coarse to fine discrimination model based on local features extracted from eyes and face images by applying PCA technique . It decomposes the acquired data into a small set of characteristic features. The objective of this research is to develop a more efficient approach to classify between seven prototypic facial expressions, such as neutral, joy, anger, surprise, fear, disgust, and sadness. A constructive procedure is detailed and the system performance is evaluated on a public database ”Japanese Females Facial Expression (JAFFE)”. As anticipated, the experimental results demonstrate the potential capabilities of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ioannou, S., Raouzaiou, A., Tzouvaras, V., Mailis, T., Karpouzis, K., Kollias, S.: Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Networks 18, 423–435 (2005)
Fragopanagos, N., Taylor, J.: Emotion recognition in human-computer interaction. Neural Networks 18, 389–405 (2005)
Yacoob, Y., Lam, H.M., Davis, L.S.: Recognizing faces showing expressions. In: International Workshop on Automatic Face and Gesture Recognition, Zurich (1995)
Bartlett, M., Viola, P., Sejnowski, T., Larsen, L., Hager, J., Ekman, P.: Classifying facial action. In: Mozer, M., Touretzky, D.S., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, vol. 8. The MIT Press, Cambridge (1996)
Ekman, P., Friesen, W.: The facial action coding system. Consulting Psychologists Press, Palo Alto (1965)
Donato, G., Bartlett, M., Hager, J., Ekman, P., Sejnowski, T.: Classifying facial actions. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(10), 974–989 (1999)
Anderson, K., McOwan, P.: A real-time automated system for the recognition of human facial expressions. IEEE Transactions on Systems, Mand, and CyberneticsXPart B 36(1), 96–105 (2006)
Devillers, L., Vidrascu, L., Lamel, L.: Challenges in real-life emotion annotation and machine learning based detection. Neural Networks 18, 407–422 (2005)
Chen, X.W., Huang, T.: Facial expression recognition: A clustering-based approach. Pattern Recognition Letters 24, 1295–1302 (2003)
Cottrell, G., Metcalfe, J.: EMPATH: Face, gender, and emotion recognition using holons. In: Moddy, J., Lippman, R.P., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 564–571 (1991)
Ma, L., Khorasani, K.: Facial expression recognition using constructive feedforward neural network. IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics 34(3), 1559–1588 (2004)
Wang, Y., Ai, H., Wu, B., Huang, C.: Real time facial expression recognition with adaboost. In: Proceedings of the 17th International Confeence on Pattern Recognition, vol. 3, pp. 926–929 (2004)
Buciu, I., Pitas, I.: Application of non-negative and local non negative matrix factorization to facial expression recognition. In: Proceedings of the 17th International Confeence on Pattern Recognition, August 2004, vol. 1, pp. 288–291 (2004)
Shinohara, Y., Otsu, N.: Facial expression recognition using fisher weight maps. In: Proceedings of the Sixth IEEE International Confeence on Automatic Face And Gesture Recognition, pp. 499–504 (2004)
Abboud, B., Davoine, F., Dang, M.: Facial expression recognition and synthesis based on an appearance model. Signal Processing: Image Communication 19(8), 723–740 (2004)
Feng, X., Pietikainen, M., Hadid, A.: Facial expression recognition with local binary patterns and linear programming. Pattern Recognition and Image Analysis 15(2), 546–548 (2005)
Nakayama, M., Kumakura, T.: Face identification performance using facial expressions as perturbation. In: Proceedings of the International Confeence on Artificial Neural Networks, vol. 1, pp. 557–562 (2005)
Amin, M., Afzulpurkar, N., Dailey, M., Esichaikul, V.: Fuzzy-C-mean determines the principle component pairs to estimate the degree of emotion from facial. In: Proceedings of the 2nd International Confeence on Fuzzy Systems and Knowledge Discovery, vol. 1, p. 484 (2005)
Datcu, D., Rothkrantz, L.: Facial expression recognition with relevance vector machines. In: Proceedings of the IEEE International Conference on Multimedia and Expo (July 2005)
Lyons, M., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, New York (1994)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Duric, Z., Gray, W., Heishman, R., Li, F., Rosenfeld, A., Schoelles, M., Schunn, C., Wechsler, H.: Integrating perceptual and cognitive modeling for adaptive and intelligent human - computer interaction. Proceedings of the IEEE 90(7), 1272–1289 (2002)
Tian, Y.-L., Kanade, T., Cohn, J.: Recognitizing action units for facial expression analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(2), 97–115 (2001)
He, L., Zhou, J., Hu, D., Zou, C., Zhao, L.: Boosted independent features for face expression recognition. In: Proceedings of the Second International Symposium on Neural Networks, May 2005, pp. 137–145 (2005)
Advanced Multimedia Processing Lab. Carnegie Mellon University, http://amp.ece.cmu.edu/projects/faceauthentication/download.htm
Ekman, P., Friesen, W.V.: Pictures of facial affect. Human Interaction Laboratory, Univ. of California Medical Center
Cowie, R., Douglas-Cowie, E., Cox, C.: Beyong emotion archetypes: Databases for emotion modelling using neural networks. Neural Networks 18, 371–388 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, DT. (2006). Human Facial Expression Recognition Using Hybrid Network of PCA and RBFN. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_65
Download citation
DOI: https://doi.org/10.1007/11840930_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38871-5
Online ISBN: 978-3-540-38873-9
eBook Packages: Computer ScienceComputer Science (R0)