iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11811220_1
On Representational Issues About Combinations of Classical Theories with Nonmonotonic Rules | SpringerLink
Skip to main content

On Representational Issues About Combinations of Classical Theories with Nonmonotonic Rules

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4092))

Abstract

In the context of current efforts around Semantic-Web languages, the combination of classical theories in classical first-order logic (and in particular of ontologies in various description logics) with rule languages rooted in logic programming is receiving considerable attention. Existing approaches such as SWRL, dl-programs, and DL + log, differ significantly in the way ontologies interact with (nonmonotonic) rules bases. In this paper, we identify fundamental representational issues which need to be addressed by such combinations and formulate a number of formal principles which help to characterize and classify existing and possible future approaches to the combination of rules and classical theories. We use the formal principles to explicate the underlying assumptions of current approaches. Finally, we propose a number of settings, based on our analysis of the representational issues and the fundamental principles underlying current approaches.

The first author was partially supported by the European Commission under projects Knowledge Web (IST-2004-507482), DIP (FP6-507483), and SEKT (IST-2003-506826), as well as by the Wolfgang Pauli Institute, Vienna. The second and the fourth author were partially supported by the Austrian Science Fund (FWF) under project P17212 and by the European Commission under project REWERSE (IST-2003-506779). The third author was partially supported by the CICyT project TIC-2003-9001-C02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference (2004) W3C Recommendation (February 10, 2004)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format, version 3.0 reference manual. Technical Report Logic-92-1, Computer Science Department, Stanford University (1992)

    Google Scholar 

  5. Delugach, H. (ed.): ISO Common Logic (2006), Available at: http://philebus.tamu.edu/cl/

  6. Gelder, A.V., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)

    MATH  Google Scholar 

  7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge (1988)

    Google Scholar 

  8. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1), 61–73 (2005)

    Google Scholar 

  9. Rosati, R.: \(\mathcal{DL}\text{+}log\): Tight integration of description logics and disjunctive datalog. In: KR 2006 (2006)

    Google Scholar 

  10. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of the International Conference of Knowledge Representation and Reasoning (KR 2004) (2004)

    Google Scholar 

  11. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and RuleML. Member submission May 21, 2004 W3C (2004)

    Google Scholar 

  12. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–386 (1991)

    Article  Google Scholar 

  14. Reiter, R.: A logic for default reasoning. In: Ginsberg, M.L. (ed.) Readings in nonmonotonic reasoning, pp. 68–93. Morgan Kaufmann Publishers Inc., San Francisco (1987)

    Google Scholar 

  15. Moore, R.C.: Semantical considerations on nonmonotonic logic. Artificial Intelligence 25(1), 75–94 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artificial Intelligence 28, 89–116 (1986)

    Article  MathSciNet  Google Scholar 

  17. Lifschitz, V.: Circumscription. In: Handbook of Logic in AI and Logic Programming, vol. 3, pp. 298–352. Oxford University Press, Oxford (1994)

    Google Scholar 

  18. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  19. Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. Journal of Automated Reasoning 5(2), 167–205 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In: Proc. of the Thirteenth International World Wide Web Conference (WWW 2004), pp. 723–731. ACM Press, New York (2004)

    Google Scholar 

  21. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Franconi, E., Tessaris, S.: Rules and queries with ontologies: A unified logical framework. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 50–60. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Proc. Intl. Conf. on the World Wide Web (WWW 2003), Budapest, Hungary (2003)

    Google Scholar 

  24. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and rule-based reasoning with extended conceptual logic programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: integrating datalog and description logics. Journal of Intelligent Information Systems 10, 227–252 (1998)

    Article  Google Scholar 

  26. Rosati, R.: Towards expressive KR systems integrating datalog and description logics: A preliminary report. In: Proc. of the 1999 International Description Logics workshop (DL 1999), pp. 160–164 (1999)

    Google Scholar 

  27. Reiter, R.: Equality and domain closure in first-order databases. Journal of the ACM 27(2), 235–249 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Lifschitz, V.: On open defaults. In: Lloyd, J. (ed.) Proceedings of the symposium on computational logic, pp. 80–95. Springer, Berlin (1990)

    Google Scholar 

  30. Konolige, K.: Quantification in autoepistemic logic. Fundamenta Informaticae 15(3-4), 275–300 (1991)

    MATH  MathSciNet  Google Scholar 

  31. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artificial Intelligence 100(1-2), 225–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gelfond, M., Przymusinska, H.: Reasoning on open domains. In: LPNMR 1993, pp. 397–413 (1993)

    Google Scholar 

  33. Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between description logics and open logic programming. In: Logic Programming, Proceedings of the Fourteenth International Conference on Logic Programming, pp. 346–360. MIT Press, Cambridge (1997)

    Google Scholar 

  34. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)

    Google Scholar 

  35. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Guarded open answer set programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 92–104. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  37. Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 275–288. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  38. Bonatti, P., Lutz, C., Wolter, F.: Expressive non-monotonic description logics based on circumscription. In: KR 2006 (2006)

    Google Scholar 

  39. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logic 3(2), 177–225 (2002)

    Article  MathSciNet  Google Scholar 

  40. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. Journal of Automated Reasoning 14, 149–180 (1995)

    Article  MathSciNet  Google Scholar 

  41. Calvanese, D., Giancomo, G.D., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)

    Google Scholar 

  42. Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report, University of Manchester (2006), Available at: http://www.cs.man.ac.uk/~bmotik/publications/paper.pdf

  43. Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence 70(1-2), 53–72 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Bruijn, J., Eiter, T., Polleres, A., Tompits, H. (2006). On Representational Issues About Combinations of Classical Theories with Nonmonotonic Rules. In: Lang, J., Lin, F., Wang, J. (eds) Knowledge Science, Engineering and Management. KSEM 2006. Lecture Notes in Computer Science(), vol 4092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811220_1

Download citation

  • DOI: https://doi.org/10.1007/11811220_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37033-8

  • Online ISBN: 978-3-540-37035-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics