iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11786986_30
Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws | SpringerLink
Skip to main content

Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

Abstract

We apply recent results on extracting randomness from independent sources to “extract” Kolmogorov complexity. For any α, ε> 0, given a string x with K(x) > α|x|, we show how to use a constant number of advice bits to efficiently compute another string y, |y|=Ω(|x|), with K(y) > (1–ε)|y|. This result holds for both classical and space-bounded Kolmogorov complexity.

We use the extraction procedure for space-bounded complexity to establish zero-one laws for polynomial-space strong dimension. Our results include:

(i) If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.

(ii) Dim(E/O(1) |ESPACE) is either 0 or 1.

(iii) Dim(E/poly |ESPACE) is either 0 or 1.

In other words, from a dimension standpoint and with respect to a small amount of advice, the exponential-time class E is either minimally complex or maximally complex within ESPACE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM Journal on Computing (to appear)

    Google Scholar 

  2. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few independent sources. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 384–393. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  3. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating independence: new constructions of condensers, ramsey graphs, dispersers, and extractors. In: Proceedings of the 37th ACM Symposium on Theory of Computing, pp. 1–10 (2005)

    Google Scholar 

  4. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. In: Proceedings of the 26th Annual IEEE Conference on Foundations of Computer Science, pp. 429–442 (1985)

    Google Scholar 

  5. Hitchcock, J.M.: Effective Fractal Dimension: Foundations and Applications. PhD thesis, Iowa State University (2003)

    Google Scholar 

  6. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: The fractal geometry of complexity classes. SIGACT News 36(3), 24–38 (2005)

    Article  Google Scholar 

  7. Hitchcock, J.M., Pavan, A.: Resource-bounded strong dimension versus resource-bounded category. Information Processing Letters 95(3), 377–381 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  9. Lu, C.-J., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: Optimal up to a constant factor. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 602–611 (2003)

    Google Scholar 

  10. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32(5), 1236–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions. Journal of Computer and System Sciences 42(2), 149–167 (1999)

    MathSciNet  Google Scholar 

  13. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–52 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Raz, R.: Extractors with weak random seeds. In: Proceedings of the 37th ACM Symposium on Theory of Computing, pp. 11–20 (2005)

    Google Scholar 

  15. Reingold, O., Shaltiel, R., Wigderson, A.: Extracting randomness via repeated condensing. In: Proceedings of the 41st Annual Conference on Foundations of Computer science (2000)

    Google Scholar 

  16. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors. In: Proceedings of the 41st Annual IEEE Conference on Foundations of Computer Science (2000)

    Google Scholar 

  17. Santha, M., Vazirani, U.: Generating quasi-random sequences from slightly random sources. In: Proceedings of the 25th Annual IEEE Conference on Foundations of Computer Science, pp. 434–440 (1984)

    Google Scholar 

  18. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-random generator. In: Proceedings of the 42nd Annual Conference on Foundations of Computer Science (2001)

    Google Scholar 

  19. Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. SIAM Journal on Computing 28(4), 1433–1459 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ta-Shma, A., Zuckerman, D., Safra, M.: Extractors from reed-muller codes. In: Proceedings of the 42nd Annual Conference on Foundations of Computer Science (2001)

    Google Scholar 

  21. Trevisan, L.: Extractors and pseudorandom generators. Journal of the ACM 48(1), 860–879 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zuckerman, D.: Randomness-optimal oblivious sampling. Random Structures and Algorithms 11, 345–367 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fortnow, L., Hitchcock, J.M., Pavan, A., Vinodchandran, N.V., Wang, F. (2006). Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_30

Download citation

  • DOI: https://doi.org/10.1007/11786986_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics