iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11780274_29
A Functorial Framework for Constraint Normal Logic Programming | SpringerLink
Skip to main content

A Functorial Framework for Constraint Normal Logic Programming

  • Chapter
Algebra, Meaning, and Computation

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4060))

Abstract

The semantic constructions and results for definite programs do not extend when dealing with negation. The main problem is related to a well-known problem in the area of algebraic specification: if we fix a constraint domain as a given model, its free extension by means of a set of Horn clauses defining a set of new predicates is semicomputable. However, if the language of the extension is richer than Horn clauses its free extension (if it exists) is not necessarily semicomputable. In this paper we present a framework that allows us to deal with these problems in a novel way. This framework is based on two main ideas: a reformulation of the notion of constraint domain and a functorial presentation of our semantics. In particular, the semantics of a logic program P is defined in terms of three functors: \(({\mathcal {OP}}_{P},{\mathcal {ALG}}_{P},{\mathcal {LOG}}_{P})\) that apply to constraint domains and provide the operational, the least fixpoint and the logical semantics of P, respectively. The idea is that the application of \({\mathcal {OP}}_{P}\) to a specific constraint solver, provides the operational semantics of P that uses this solver; the application of \({\mathcal {ALG}}_{P}\) to a specific domain, provides the least fixpoint of P over this domain; and the application of \({\mathcal {LOG}}_{P}\) to a theory of constraints provides the logic theory associated to P. We prove that these three functors are in some sense equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aĺvez, J., Lucio, P., Orejas, F.: Constructive negation by bottom-up computation of literal answers. In: Proc. 20004 ACM Symp. on Applied Computing, pp. 1468–1475 (2004)

    Google Scholar 

  2. Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of algebraic specifications. In: Gruska, J., Chytil, M. (eds.) MFCS 1981. LNCS, vol. 118, pp. 193–204. Springer, Heidelberg (1981)

    Google Scholar 

  3. Carnielli, W.A.: Sistematization of finite many-valued logics through the method of tableaux. J. of Symbolic Logic 52(2), 473–493 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–322. Plenum Press, New York (1978)

    Google Scholar 

  5. Drabent, W.: What is a failure? An approach to constructive negation. Acta Informática 32, 27–59 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fages, F.: Constructive Negation by pruning. J. of Logic Programming 32, 85–118 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fitting, M.: A Kripke-Kleene semantics for logic programs. J. of Logic Programming 4, 295–312 (1985)

    Article  MathSciNet  Google Scholar 

  8. Goguen, J., Meseguer, J.: Initiality, Induction and Computability. In: Nivat, M., Reynolds, J. (eds.) Algebraic Methods in Semantics, pp. 459–540. Cambridge Univ. Press, Cambridge (1985)

    Google Scholar 

  9. Jaffar, J., Lassez, J.-L.: Constraint logic programming. In: POPL, pp. 111–119 (1987)

    Google Scholar 

  10. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. of Logic Programming (19/20), 503–581 (1994)

    Google Scholar 

  11. Jaffar, J., Maher, M., Marriot, K., Stukey, P.: The semantics of constraint logic programs. J. of Logic Programming (37), 1–46 (1998)

    Google Scholar 

  12. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)

    MATH  Google Scholar 

  13. Kunen, K.: Signed data dependencies in logic programs. J. of Logic Programming 7, 231–245 (1989)

    Article  MathSciNet  Google Scholar 

  14. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  15. Lucio, P., Orejas, F., Pino, E.: An algebraic framework for the definition of compositional semantics of normal logic programs. J. of Logic Programming 40, 89–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pasarella, E., Pino, E., Orejas, F.: Constructive Negation without subsidiary trees. In: 9th Int. Workshop on Functional and Logic Programming, Benicassim, Spain (2000)

    Google Scholar 

  17. Przymusinski, T.: On the declarative semantics of deductive databases and logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Progamming, pp. 193–216. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  18. Shepherdson, J.C.: Language and equality theory in logic programming. Technical Report PM-91-02, University of Bristol (1991)

    Google Scholar 

  19. Stuckey, P.J.: Negation and constraint logic programmming. Information and Computation 118, 12–23 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucio, P., Orejas, F., Pasarella, E., Pino, E. (2006). A Functorial Framework for Constraint Normal Logic Programming. In: Futatsugi, K., Jouannaud, JP., Meseguer, J. (eds) Algebra, Meaning, and Computation. Lecture Notes in Computer Science, vol 4060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780274_29

Download citation

  • DOI: https://doi.org/10.1007/11780274_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35462-8

  • Online ISBN: 978-3-540-35464-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics