iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11760023_141
Discrete-Time Sliding-Mode Control Based on Neural Networks | SpringerLink
Skip to main content

Discrete-Time Sliding-Mode Control Based on Neural Networks

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Included in the following conference series:

Abstract

In this paper, we present a new sliding mode controller for a class of unknown nonlinear discrete-time systems. We make the following two modifications: 1) The neural identifier which is used to estimate the unknown nonlinear system, applies new learning algorithms. The stability and non-zero properties are proved by dead-zone and projection technique. 2) We propose a new sliding surface and give a necessary condition to assure exponential decrease of the sliding surface. The time-varying gain in the sliding mode produces a low-chattering control signal. The closed-loop system with sliding mode controller and neural identifier is proved to be stable by Lyapunov method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartoszewicz, A.: Discrete-Time Quasi-Sliding Mode Control Strategies. IEEE Transactions on Industrial Electronics 45(4), 633–637 (1998)

    Article  Google Scholar 

  2. Chen, F.C., Khalil, H.K.: Adaptive Control of a Class of Nonlinear Discrete Time Systems Using Neural Networks. IEEE Transactions on Automatic Control 40(5), 791–801 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fang, Y., Chow, T.W., Li, X.D.: Use of a Recurrent Neural Network in Discrete Sliding-Mode Control. IEE Proceeding-Control Theory Applications 146(1), 84–90 (1999)

    Article  Google Scholar 

  4. Furuta, K.: Sliding Mode Control of a Discrete System. Systems and Control Letters 14(2), 145–152 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, W., Wang, Y., Homaifa, A.: Discrete-Time Variable Structure Control Systems. IEEE Trans. Ind. Electron. 42(1), 117–122 (1995)

    Google Scholar 

  6. Hui, S., Kak, H.: On Discrete-Time Variable Structure Sliding Mode Control. Systems and Control Letters 38(3), 283–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jagannathan, S.: Control of a Class of Nonlinear Discrete-Time Systems Using Multilayer Neural Networks. IEEE Transactions on Neural Networks 12(5), 1113–1120 (2001)

    Article  MathSciNet  Google Scholar 

  8. Lin, F.J., Fung, R.F., Wai, R.-J.: Conparison of Sliding-Mode and Fuzzy Neural Network Control for Motor-Toggle Servomechanism. IEEE Transactions on Mechatronics 3(4), 302–318 (1998)

    Article  Google Scholar 

  9. Muñoz, D., Sbarbaro, D.: An Adaptive Sliding-Mode Controller for Discrete Nonlinear Systems. IEEE Transactions on Industrial Electronics 47(3), 574–581 (2000)

    Article  Google Scholar 

  10. Nounou, H.N., Passino, K.M.: Stable Auto-Tuning of Adaptive Fuzzy /Neural Controllers for Nonlinear Discrete-Time Systems. IEEE Transactions on Fuzzy Systems 12(1), 70–83 (2004)

    Article  Google Scholar 

  11. Saaj, M., Bandyopadhyay, C.B., Unbehauen, H.: A new Algorithm for Discrete-Time Sliding-Mode Control Using Fast output Sampling Feedback. IEEE Transactions on Industrial Electronics 49(3), 518–523 (2002)

    Article  Google Scholar 

  12. Sarpturk, S.Z., Istefanopolos, Y., Kaynak, O.: On the Stability of Discrete-Time Sliding Mode Control Systems. IEEE Transactions on Automatic Control 32(10), 930–932 (1987)

    Article  MATH  Google Scholar 

  13. Sira-Ramirez, H.: Nonlinear Discrete Variable Strusture Systems in Quasi-Sliding Mode. Int. J. Control 45(5), 1171–1187 (1999)

    MathSciNet  Google Scholar 

  14. Tsai, C.H., Chung, H.Y.: Neuro Sliding Mode Control With Its Appications to Seesaw Systems. IEEE Transactions on Neural Networks 15(1), 124–134 (2004)

    Article  Google Scholar 

  15. Utkin, V.I.: Sliding Modes in Optimization and Control. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  16. Yu, W., Moreno, M.A., Li, X.: Observer Based Neuro Identifier. IEE Proceedings - Control Theory and Applications 147(2), 145–152 (2000)

    Article  Google Scholar 

  17. Yu, W., Poznyak, A.S., Sanchez, E.N.: Neural Adaptive Control of Two-Link Manipulator with Sliding Mode. In: Proc. of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3122–3127 (1999)

    Google Scholar 

  18. Zhu, Q., Guo, L.: Stable Adaptive Neurocontrol for Nonlinear Discrete- Time Systems. IEEE Transactions on Neural Networks 15(3), 653–662 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Jesús Rubio, J., Yu, W. (2006). Discrete-Time Sliding-Mode Control Based on Neural Networks. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_141

Download citation

  • DOI: https://doi.org/10.1007/11760023_141

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics