Abstract
In this paper, we present a new sliding mode controller for a class of unknown nonlinear discrete-time systems. We make the following two modifications: 1) The neural identifier which is used to estimate the unknown nonlinear system, applies new learning algorithms. The stability and non-zero properties are proved by dead-zone and projection technique. 2) We propose a new sliding surface and give a necessary condition to assure exponential decrease of the sliding surface. The time-varying gain in the sliding mode produces a low-chattering control signal. The closed-loop system with sliding mode controller and neural identifier is proved to be stable by Lyapunov method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartoszewicz, A.: Discrete-Time Quasi-Sliding Mode Control Strategies. IEEE Transactions on Industrial Electronics 45(4), 633–637 (1998)
Chen, F.C., Khalil, H.K.: Adaptive Control of a Class of Nonlinear Discrete Time Systems Using Neural Networks. IEEE Transactions on Automatic Control 40(5), 791–801 (1995)
Fang, Y., Chow, T.W., Li, X.D.: Use of a Recurrent Neural Network in Discrete Sliding-Mode Control. IEE Proceeding-Control Theory Applications 146(1), 84–90 (1999)
Furuta, K.: Sliding Mode Control of a Discrete System. Systems and Control Letters 14(2), 145–152 (1990)
Gao, W., Wang, Y., Homaifa, A.: Discrete-Time Variable Structure Control Systems. IEEE Trans. Ind. Electron. 42(1), 117–122 (1995)
Hui, S., Kak, H.: On Discrete-Time Variable Structure Sliding Mode Control. Systems and Control Letters 38(3), 283–288 (1999)
Jagannathan, S.: Control of a Class of Nonlinear Discrete-Time Systems Using Multilayer Neural Networks. IEEE Transactions on Neural Networks 12(5), 1113–1120 (2001)
Lin, F.J., Fung, R.F., Wai, R.-J.: Conparison of Sliding-Mode and Fuzzy Neural Network Control for Motor-Toggle Servomechanism. IEEE Transactions on Mechatronics 3(4), 302–318 (1998)
Muñoz, D., Sbarbaro, D.: An Adaptive Sliding-Mode Controller for Discrete Nonlinear Systems. IEEE Transactions on Industrial Electronics 47(3), 574–581 (2000)
Nounou, H.N., Passino, K.M.: Stable Auto-Tuning of Adaptive Fuzzy /Neural Controllers for Nonlinear Discrete-Time Systems. IEEE Transactions on Fuzzy Systems 12(1), 70–83 (2004)
Saaj, M., Bandyopadhyay, C.B., Unbehauen, H.: A new Algorithm for Discrete-Time Sliding-Mode Control Using Fast output Sampling Feedback. IEEE Transactions on Industrial Electronics 49(3), 518–523 (2002)
Sarpturk, S.Z., Istefanopolos, Y., Kaynak, O.: On the Stability of Discrete-Time Sliding Mode Control Systems. IEEE Transactions on Automatic Control 32(10), 930–932 (1987)
Sira-Ramirez, H.: Nonlinear Discrete Variable Strusture Systems in Quasi-Sliding Mode. Int. J. Control 45(5), 1171–1187 (1999)
Tsai, C.H., Chung, H.Y.: Neuro Sliding Mode Control With Its Appications to Seesaw Systems. IEEE Transactions on Neural Networks 15(1), 124–134 (2004)
Utkin, V.I.: Sliding Modes in Optimization and Control. Springer, Heidelberg (1992)
Yu, W., Moreno, M.A., Li, X.: Observer Based Neuro Identifier. IEE Proceedings - Control Theory and Applications 147(2), 145–152 (2000)
Yu, W., Poznyak, A.S., Sanchez, E.N.: Neural Adaptive Control of Two-Link Manipulator with Sliding Mode. In: Proc. of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3122–3127 (1999)
Zhu, Q., Guo, L.: Stable Adaptive Neurocontrol for Nonlinear Discrete- Time Systems. IEEE Transactions on Neural Networks 15(3), 653–662 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Jesús Rubio, J., Yu, W. (2006). Discrete-Time Sliding-Mode Control Based on Neural Networks. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_141
Download citation
DOI: https://doi.org/10.1007/11760023_141
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34437-7
Online ISBN: 978-3-540-34438-4
eBook Packages: Computer ScienceComputer Science (R0)