iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11759966_17
Global Exponential Stability in Lagrange Sense of Continuous-Time Recurrent Neural Networks | SpringerLink
Skip to main content

Global Exponential Stability in Lagrange Sense of Continuous-Time Recurrent Neural Networks

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

Abstract

In this paper, global exponential stability in Lagrange sense is further studied for continuous recurrent neural network with three different activation functions. According to the parameters of the system itself, detailed estimation of global exponential attractive set, and positive invariant set is presented without any hypothesis on existence. It is also verified that outside the global exponential attracting set; i.e., within the global attraction domain, there is no equilibrium point, periodic solution, almost periodic solution, and chaos attractor of the neural network. These theoretical analysis narrowed the search field of optimization computation and associative memories, provided convenience for application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopfield, J.J.: Neurons with Graded Response Have Collective Computational Properties Like Those of Two-state Neurons. Proc. Natl. Academy Sci. 81, 3088–3092 (1984)

    Article  Google Scholar 

  2. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Liao, X.X.: Stability of Hopfield-type Neural Networks (I). Science in China, Series A 38, 407–418 (1995)

    MATH  Google Scholar 

  4. Liao, X.X.: Mathematical Theory of Cellular Neural Networks (I). Science in China, Series A 24, 902–910 (1994)

    Google Scholar 

  5. Liao, X.X.: Mathematical Theory of Cellular Neural Networks (II). Science in China, Series A 24, 1037–1046 (1994)

    Google Scholar 

  6. Liao, X.X., Wang, J.: Algebraic Criteria for Global Exponential Stability of Cellular Neural Networks with Multiple Time Delays. IEEE Trans. Circuits and Systems I. 50, 268–275 (2003)

    Article  MathSciNet  Google Scholar 

  7. Liao, X.X., Wang, J., Zeng, Z.G.: Global Asymptotic Stability and Global Exponential Stability of Delayed Cellular Neural Networks. IEEE Trans. on Circuits and Systems II, Express Briefs 52, 403–409 (2005)

    Article  Google Scholar 

  8. Shen, Y., Jiang, M.H., Liao, X.X.: Global Exponential Stability of Cohen-Grossberg Neural Networks with Time-varying Delays and Continuously Distributed Delays. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 156–161. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Zeng, Z.G., Wang, J., Liao, X.X.: Stability Analysis of Delayed Cellular Neural Networks Described Using Cloning Templates. IEEE Trans. Circuits and Syst. I 51, 2313–2324 (2004)

    Article  MathSciNet  Google Scholar 

  10. Yi, Z., Tan, K.K.: Convergence Analysis of Recurrent Neural Networks. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  11. Michel, A.N., Liu, D.: Qualitative Analysis and Synthesis of Recurrent Neural Networks. Marcel Dekker, New York (2002)

    MATH  Google Scholar 

  12. Xu, D.Y., Yang, Z.C.: Impulsive Delay Differential Inequality and Stability of Neural Networks. J. Math. Anal. and Appl. 305, 107–120 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liao, X.F., Yu, J.B.: Robust Stability for Interval Hopfield Neural Networks with Time Delay. IEEE Transactions on Neural Networks 9, 1042–1045 (1998)

    Article  Google Scholar 

  14. Forti, M., Manetti, S., Marini, M.: Necessary and Sufficient Condition for Absolute Stability of Neural Networks. IEEE Trans. Circuits and Syst. I 41, 491–494 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liao, X.X., Wang, J.: Global Dissipativity of Continuous-time Recurrent Neural Networks with Time Delay. Physical Review E 68, 16118 (2003)

    Article  MathSciNet  Google Scholar 

  16. Li, Q.D., Yang, X.S.: Complex Dynamics in A Simple Hopfield-type Neural Network. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 357–362. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, X., Zeng, Z. (2006). Global Exponential Stability in Lagrange Sense of Continuous-Time Recurrent Neural Networks. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_17

Download citation

  • DOI: https://doi.org/10.1007/11759966_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics