iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11758471_20
Tighter Approximation Bounds for LPT Scheduling in Two Special Cases | SpringerLink
Skip to main content

Tighter Approximation Bounds for LPT Scheduling in Two Special Cases

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

Abstract

Q||C max denotes the problem of scheduling n jobs on m machines of different speeds such that the makespan is minimized. In the paper two special cases of Q||C max are considered: Case I, when m–1 machine speeds are equal, and there is only one faster machine; and Case II, when machine speeds are all powers of 2. Case I has been widely studied in the literature, while Case II is significant in an approach to design so called monotone algorithms for the scheduling problem.

We deal with the worst case approximation ratio of the classic list scheduling algorithm ’Longest Processing Time (LPT)’. We provide an analysis of this ratio Lpt/Opt for both special cases: For one fast machine, a tight bound of \((\sqrt{3}+1)/2\approx 1.366\) is given. When machine speeds are powers of 2 (2-divisible machines), we show that in the worst case 41/30 <Lpt/Opt<42/30=1.4.

To our knowledge, the best previous lower bound for both problems was 4/3–ε, whereas the best known upper bounds were 3/2–1/2m for Case I [6] resp. 3/2 for Case II [10]. For both the lower and the upper bound, the analysis of Case II is a refined version of that of Case I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc. 42nd IEEE Symp. on Found. of Comp. Sci (FOCS), pp. 482–491 (2001)

    Google Scholar 

  2. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal on Computing 9(1), 91–103 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor scheduling. SIAM Journal on Computing 7(1), 1–17 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobson, G.: Scheduling independent tasks on uniform processors. SIAM Journal on Computing 13(4), 705–716 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Friesen, D.K.: Tighter bounds for LPT scheduling on uniform processors. SIAM Journal on Computing 16(3), 554–560 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gonzalez, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM Journal on Computing 6(1), 155–166 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comp. 17(3), 539–551 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM 23, 317–327 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kovács, A.: Tighter approximation bounds for LPT scheduling in two special cases, Extended version: http://www.mpi-inf.mpg.de/~panni/approx.ps

  10. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–627. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Li, R., Shi, L.: An on-line algorithm for some uniform processor scheduling. SIAM Journal on Computing 27(2), 414–422 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, J.W.S., Liu, C.L.: Bounds on scheduling algorithms for heterogeneous computing systems. In: Proc. Intern. Feder. of Inf. Proc. Soc, pp. 349–353 (1974)

    Google Scholar 

  13. Mireault, P., Orlin, J.B., Vohra, R.V.: A parametric worst case analysis of the LPT heuristic for two uniform machines. Oper. Res. 45(1), 116–125 (1997)

    Article  MATH  Google Scholar 

  14. Johnson, D.S., Garey, M.R.: Computers and Intractability; A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  15. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truthful approximation mechanisms for scheduling related machines. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kovács, A. (2006). Tighter Approximation Bounds for LPT Scheduling in Two Special Cases. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_20

Download citation

  • DOI: https://doi.org/10.1007/11758471_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics