Abstract
Context-based applications are supposed to decrease human-machine interactions. To this end, they must interpret the meaning of context data. Ontologies are a commonly accepted approach of specifying data semantics and are thus considered a precondition for the implementation of context-based systems. Yet, experiences gained from the European project Daidalos evoke concerns that this approach has its flaws when the application domain can hardly be delimited. These concerns are raised by the human limitation in dealing with complex specifications.
This paper proposes a relaxation of the situation: Humans strength is the understating of natural languages, computers, however, possess superior pattern matching power. Therefore, it is suggested to enrich or even replace semantic specifications of context data items by free-text descriptions. For instance, rather than using an Ontology specification to describe an Italian restaurant the restaurant can simply be described by its menu card.
To facilitate this methodology, context documents are introduced and a novel information retrieval approach is elucidated, evaluated, and analysed with the help of Bose-Einstein statistics. It is demonstrated that the new approach clearly outperforms conventional information retrieval engines and is an excellent addition to context Ontologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gu, T., Pung, H., Zhang, D.Q.: Toward an OSGI-based Infrastructure for Context-Aware Applications. IEEE Pervasive Computing 3, 66–74 (2004)
Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic Space: An Infrastructure for Smart Spaces. IEEE Pervasive Computing 3, 32–39 (2004)
Christopoulou, E., Kameas, A.: GAS Ontology: An ontology for collaboration among ubiquitous computing. International Journal of Human-Computer Studies: Special issue on Protege 62, 664–685 (2005)
Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an Extensible Context Ontology for Ambient Intelligence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg (2004)
Khedr, M., Karmouch, A.: ACAI: Agent-based context-aware infrastructure for spontaneous applications. Journal of Network and Computer Applications 28, 19–44 (2005)
Noy, N.: Order from chaos. ACM Queue 3 (2005), http://www.acmqueue.org
Guiasu, S.: Information theory with applications. McGraw-Hill, New York (1977)
Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing Journal 5, 4–7 (2001)
Daidalos Consortium: Designing Advanced network Interfaces for the Delivery and Administration of Location independent, Optimised personal Services (DAIDALOS) (2005), http://www.ist-daidalos.org
Strimpakou, M., Roussaki, I., Pils, C., Angermann, M., Robertson, P., Anagnostou, M.: Context modelling and management in ambient-aware pervasive environments. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 2–15. Springer, Heidelberg (2005)
Bauer, M., Becker, C., Rothermel, K.: Location models from the perspective of context-aware applications and mobile ad hoc networks. Personal and Ubiquitous Computing 6, 322–328 (2002)
Shekhar, S., Chawla, S., Ravada, S., Fetterer, A., Liu, X., Lu, C.: Spatial databases — Accomplishments and research needs. IEEE Transactions on Knowledge and Data Engineering 11, 45–55 (1999)
Larson, R.R., Frontiera, P.: Spatial Ranking Methods for Geographic Information Retrieval (GIR) in Digital Libraries. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 45–56. Springer, Heidelberg (2004)
Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: The concept revisited. ACM Transactions on Information Systems 20, 116–131 (2002)
Kammanahalli, H., Gopalan, S., Sridhar, V., Ramamritham, K.: Context aware retrieval in web-based collaborations. In: Third IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW 2005): Workshop on Context Modeling and Reasoning (CoMoRea 2004), pp. 8–12. IEEE computer society press, Los Alamitos (2004)
Jones, G.J.F., Brown, P.J.: Context-aware retrieval for ubiquitous computing environments. In: Crestani, F., Dunlop, M.D., Mizzaro, S. (eds.) Mobile HCI International Workshop 2003. LNCS, vol. 2954, pp. 227–243. Springer, Heidelberg (2004)
Lesk, M.: The seven ages of information retrieval. In: Proceedings of the conference for the 50th anniversery of As we May Think, International Federation of Library Associations and Institutions (1995), http://www.ifla.org/VI/5/op/udtop5/udt-op5.pdf
Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments - part 2. Information Processing and Management 36, 809–840 (2000)
Amati, G., Van Rijsbergen, J.C.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems (TOIS) 20, 357–389 (2002)
Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An information-theoretic approach to automaitc query expansion. ACM Transactions on Information Systems 19, 1–27 (2001)
Brown, J.P., Jones, G.J.: Exploiting contextual change in context-aware retrieval. In: Proceedings of the 17th ACM Symposium on Applied Computing (SAC 2002), Madrid, pp. 650–656. ACM press, New York (2002)
Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering 15, 784–796 (2003)
Chen, A.: Context-aware collaborative filtering system: Predicting the user’s preference in the ubiquitous computing environment. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 244–253. Springer, Heidelberg (2005)
Hanani, U., Shapira, B., Shoval, P.: Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction 11, 203–259 (2001)
Yu, C., Liu, K.L., Meng, W., Wu, Z., Rishe, N.: A methodology to retrieve text documents from multiple databases. IEEE Transactions on Knowledge and Data Engineering 14, 1347–1361 (2002)
Voorhees, E.: The philosophy of information retrieval evaluation. In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 355–370. Springer, Heidelberg (2002)
National Institute of Standards and Technology: Text REtrieval Conference (TREC) (2005), http://trec.nist.gov
Pils, C.: Homepage (2005), http://www.pils.it
University of Glasgow, Informtion Retrieval Group: TERabyte RetrIEveR (Terrier) (2005), http://ir.dcs.gla.ac.uk/terrier
Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Johnson, D.: Terrier Information Retrieval Platform. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 517–519. Springer, Heidelberg (2005)
Rijsbergen, C.: 7. Evaluation. In: Information Retrieval, 2nd edn., pp. 112–139. Butterworths (1979)
Rhodes, B.J., Maes, P.: Just-in-time information retrieval agents. IBM Systems Journal 39, 685–704 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pils, C., Roussaki, I., Strimpakou, M. (2006). Location-Based Context Retrieval and Filtering. In: Hazas, M., Krumm, J., Strang, T. (eds) Location- and Context-Awareness. LoCA 2006. Lecture Notes in Computer Science, vol 3987. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752967_17
Download citation
DOI: https://doi.org/10.1007/11752967_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34150-5
Online ISBN: 978-3-540-34151-2
eBook Packages: Computer ScienceComputer Science (R0)