iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11751588_12
Transmission Rate Prediction of VBR Motion Image Using the Kalman Filter | SpringerLink
Skip to main content

Transmission Rate Prediction of VBR Motion Image Using the Kalman Filter

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3981))

Included in the following conference series:

Abstract

We propose a transmission rate prediction method of video data. The proposed method uses a Kalman filter for predicting transmission rate. It used algorithm to detect shot transition information by high speed in compressed domain in order to grasp precise shot transition of video data and classified into abrupt shot transition type and gradual shot transition type. Classified information is used as factors of Kalman filter and to predict transmission rate of video data. It predicted transmission rate with 96.2 ~  97.6% in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ISO/IEC JTC1/SC29/WG11, Information Technology- Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5Mbit/s, International Standard 11172 Part 1 - Part 5 (1993)

    Google Scholar 

  2. ISO/IEC JTC1/SC29/WG11, Information Technology- Generic Coding of Moving Pictures and Associated Audio Information, International Standard 13818 Part 1 ~ Part 5 (1996)

    Google Scholar 

  3. ISO/IEC JTC1/SC29/WG11, Multimedia Content Subscription Interface, Final Draft International Standard  N4674 Part 1~Part 8 (2002)

    Google Scholar 

  4. Son, S.H., Koh, K.: VBR video data retrieval for video server. KISS Transaction A 25(2), 101–113 (1998)

    Google Scholar 

  5. Habib, I., Saadawi, T.: Dynamic bandwidth control in ATM networks. Compter Communications, 22 (1999)

    Google Scholar 

  6. Tsang, D.H.K., Bensaou, B., Lam, S.T.C.: Fuzzy-Based Rate Control for Real-Time MPEG Video. IEEE Transactions on Fuzzy System 6(4) (November 1998)

    Google Scholar 

  7. Piackering, M.R., Arnold, J.F.: A Perceptually Efficient VBR Rate Control Algorithm. IEEE Transactions on Image Processing, 3(5) (September 1994)

    Google Scholar 

  8. Heyman, D.P., Lakshman, T.: Source models for VBR broadcast-video traffic. IEEE/ACM Trans. Networking 4, 40–48 (1996)

    Article  Google Scholar 

  9. Reibman, A.R., Haskell, B.: Constraints on variable bit rate video for ATM networks. IEEE Trans. Circuits Syst. Video Technol. 2, 361–372 (1992)

    Article  Google Scholar 

  10. Heeke, H.: A traffic control algorithm for ATM networks. IEEE Trans. Circuits Syst. Video Technol. 3, 182–189 (1993)

    Article  Google Scholar 

  11. Coelho, R., Tohme, S.: Video coding mechanism to predict video traffic in ATM network. In: IEEE GLOBECOM 1993, Houston, TX, December 1993, pp. 447–451 (1993)

    Google Scholar 

  12. Pickering, M.R., Arnold, J.F.: A perceptually efficient VBR rate control algorithm. IEEE Trans. Image Processing 3(5), 527–532 (1994)

    Article  Google Scholar 

  13. Hamdi, M., Robert, J.W.: QoS guarantees for shaped bit rate video connections in broadband networks. In: Proc. Int. Conf. Multimedia Networking, Azu- Wakamatsu, Japan (September 1995)

    Google Scholar 

  14. Tsang, D.H.K., Bensaou, B., Lum, S.T.C.: Fuzzy-Based rate Control for Real-Time MPEG Video. IEEE Trans. Fuzzy Systems 6(4) (November 1998)

    Google Scholar 

  15. Mandal, M.K., Idris, F., Panchanathan, S.: A critical evaluation of image and video indexing techniques in the compressed domain. Image and Vision Computing 17, 513–529 (1999)

    Article  Google Scholar 

  16. Yeo, B.L., Liu, B.: Rapid scene analysis on compressed video. IEEE Trans. Circuits and Systems for Video Technology 5, 533–544 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, W., Jang, HJ., Kim, GY. (2006). Transmission Rate Prediction of VBR Motion Image Using the Kalman Filter. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751588_12

Download citation

  • DOI: https://doi.org/10.1007/11751588_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34072-0

  • Online ISBN: 978-3-540-34074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics