iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11730637_23
Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes | SpringerLink
Skip to main content

Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3927))

Included in the following conference series:

Abstract

This paper presents a method for computing the reach set of affine systems for sets of initial states given as low-dimensional polytopes. An affine representation for polytopes is introduced to improve the efficiency of set representations. Using the affine representation, we present a procedure to compute conservative over-approximations of the reach set, which uses the Krylov subspace approximation method to handle large-scale affine systems (systems of order over 100).

Research supported in part by US Army Research Office (ARO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Stursberg, O., Krogh, B.H.: On efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS, University of Pennsylvania (2005)

    Google Scholar 

  5. Bemporad, A., Pilippi, C., Torrisi, F.D.: Inner and outer approximation of polytopes using boxes. Computational Geometry: Theory and Applications 27(2), 151–178 (2003)

    Article  MathSciNet  Google Scholar 

  6. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Ma, J.D., Rutenbar, R.A.: Interval-valued reduced order statistical interconnect modeling. In: Computer Aided Design, 2004. IEEE/ACM International Conference on, pp. 1092–3152 (2004)

    Google Scholar 

  8. de Figueiredo, L.H., Stolf, J.: Self-Validated Numerical Methods and Applications, Rio de Janeiro, Brazil. Brazilian Mathematics Colloquium monograph, IMPA (1997)

    Google Scholar 

  9. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM Journal of Numerical Analysis 20(1), 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grünbaum, B.: Convex Polytopes, 2nd edn. Springer, New York (2003)

    Book  MATH  Google Scholar 

  11. Chutinan, A., Krogh, B.H.: Compuational techniques for hybrid system verification. IEEE Transaction on Automatic Control 48(1), 64–75 (2003)

    Article  MATH  Google Scholar 

  12. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sidje, R.B.: Expokit: Software package for computing matrix exponentials. ACM Transactions on Mathematical Software 24(1), 130–156 (1998)

    Article  MATH  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press (1996)

    Google Scholar 

  15. Han, Z.: Reachability analysis of continuous dynamic systems using dimension reduction and decomposition. PhD thesis, Carnegie Mellon University (2005)

    Google Scholar 

  16. Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, Inc. (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, Z., Krogh, B.H. (2006). Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_23

Download citation

  • DOI: https://doi.org/10.1007/11730637_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33170-4

  • Online ISBN: 978-3-540-33171-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics