Abstract
This paper presents a method for computing the reach set of affine systems for sets of initial states given as low-dimensional polytopes. An affine representation for polytopes is introduced to improve the efficiency of set representations. Using the affine representation, we present a procedure to compute conservative over-approximations of the reach set, which uses the Krylov subspace approximation method to handle large-scale affine systems (systems of order over 100).
Research supported in part by US Army Research Office (ARO).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)
Stursberg, O., Krogh, B.H.: On efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)
Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004)
Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS, University of Pennsylvania (2005)
Bemporad, A., Pilippi, C., Torrisi, F.D.: Inner and outer approximation of polytopes using boxes. Computational Geometry: Theory and Applications 27(2), 151–178 (2003)
Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)
Ma, J.D., Rutenbar, R.A.: Interval-valued reduced order statistical interconnect modeling. In: Computer Aided Design, 2004. IEEE/ACM International Conference on, pp. 1092–3152 (2004)
de Figueiredo, L.H., Stolf, J.: Self-Validated Numerical Methods and Applications, Rio de Janeiro, Brazil. Brazilian Mathematics Colloquium monograph, IMPA (1997)
Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM Journal of Numerical Analysis 20(1), 209–228 (1992)
Grünbaum, B.: Convex Polytopes, 2nd edn. Springer, New York (2003)
Chutinan, A., Krogh, B.H.: Compuational techniques for hybrid system verification. IEEE Transaction on Automatic Control 48(1), 64–75 (2003)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45(1), 3–49 (2003)
Sidje, R.B.: Expokit: Software package for computing matrix exponentials. ACM Transactions on Mathematical Software 24(1), 130–156 (1998)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press (1996)
Han, Z.: Reachability analysis of continuous dynamic systems using dimension reduction and decomposition. PhD thesis, Carnegie Mellon University (2005)
Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, Inc. (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Han, Z., Krogh, B.H. (2006). Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_23
Download citation
DOI: https://doi.org/10.1007/11730637_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33170-4
Online ISBN: 978-3-540-33171-1
eBook Packages: Computer ScienceComputer Science (R0)