iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11541868_13
Real Number Calculations and Theorem Proving | SpringerLink
Skip to main content

Real Number Calculations and Theorem Proving

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3603))

Included in the following conference series:

Abstract

Wouldn’t it be nice to be able to conveniently use ordinary real number expressions within proof assistants? In this paper we outline how this can be done within a theorem proving framework. First, we formally establish upper and lower bounds for trigonometric and transcendental functions. Then, based on these bounds, we develop a rational interval arithmetic where real number calculations can be performed in an algebraic setting. This pragmatic approach has been implemented as a strategy in PVS. The strategy provides a safe way to perform explicit calculations over real numbers in formal proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.: Handbook of Mathematical Functions. National Bureau of Standards (1972)

    Google Scholar 

  2. Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–530. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Ciaffaglione, A.: Certified Reasoning on Real Numbers and Objects in Coinductive Type Theory. PhD thesis, Università degli Studi di Udine (1993)

    Google Scholar 

  4. Daumas, M., Melquiond, G.: Generating formally certified bounds on values and round-off errors. In: Real Numbers and Computers, Dagstuhl, Germany, pp. 55–70 (2004)

    Google Scholar 

  5. Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: Accepted for publication at the 17th IEEE Symposium on Computer Arithmetic (1995)

    Google Scholar 

  6. Dutertre, B.: Elements of mathematical analysis in PVS. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 141–156. Springer, Heidelberg (1996)

    Google Scholar 

  7. Fleuriot, J., Paulson, L.: Mechanizing nonstandard real analysis. LMS Journal of Computation and Mathematics 3, 140–190 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gamboa, R.: Mechanically Verifying Real-Valued Algorithms in ACL2. PhD thesis, University of Texas at Austin (May 1999)

    Google Scholar 

  9. Gottliebsen, H.: Automated Theorem Proving for Mathematics: Real Analysis in PVS. PhD thesis, University of St Andrews (June 2001)

    Google Scholar 

  10. Gowland, P., Lester, D.: A survey of exact computer arithmetic. In: Blanck, J., Brattka, V., Hertling, P., Weihrauch, K. (eds.) Computability and Complexity in Analysis, CCA2000 Workshop, Swansea, Wales. Informatik Berichte, vol. 272, pp. 99–115. FernUniversität Hagen (2000)

    Google Scholar 

  11. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995)

    Google Scholar 

  12. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  13. Hickey, T., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles to implementation. Journal of the ACM (2001)

    Google Scholar 

  14. Kearfott, R.B.: Interval computations: Introduction, uses, and resources. Euromath Bulletin 2(1), 95–112 (1996)

    MathSciNet  Google Scholar 

  15. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique. PhD thesis, Université Paris VI, décembre (2001)

    Google Scholar 

  16. Ménissier, V.: Arithmétique Exacte : Conception, Algorithmique et Performances d’une Implantation Informatique en Précision Arbitraire. PhD thesis, Université Paris VI, Paris, France (1994)

    Google Scholar 

  17. Muñoz, C.: PVSio reference manual – Version 2.a (2004), Available from http://research.nianet.org/~munoz/PVSio

  18. Muñoz, C., Carreño, V., Dowek, G., Butler, R.W.: Formal verification of conflict detection algorithms. International Journal on Software Tools for Technology Transfer 4(3), 371–380 (2003)

    Article  Google Scholar 

  19. Niqui, M.: Formalising Exact Arithmetic: Representations, Algorithms and Proofs. PhD thesis, Radboud University Nijmegen (1994)

    Google Scholar 

  20. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

    Google Scholar 

  21. Pour-El, M., Richards, J.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)

    Google Scholar 

  22. Robinson, R.M.: Review of Peter, R., Rekursive Funktionen. The Journal of Symbolic Logic 16, 280–282 (1951)

    Article  Google Scholar 

  23. Shankar, N.: Efficiently executing PVS. Project report, Computer Science Laboratory, SRI International, Menlo Park (1999), Available at http://www.csl.sri.com/shankar/PVSeval.ps.gz

  24. Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. The Journal of Symbolic Logic 14(3), 145–158 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  25. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

    MATH  Google Scholar 

  26. von Henke, F.W., Pfab, S., Pfeifer, H., Rueß, H.: Case Studies in Meta-Level Theorem Proving. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 461–478. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Yakovlev, A.: Classification approach to programming of localizational (interval) computations. Interval Computations 1(3), 61–84 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muñoz, C., Lester, D. (2005). Real Number Calculations and Theorem Proving. In: Hurd, J., Melham, T. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2005. Lecture Notes in Computer Science, vol 3603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11541868_13

Download citation

  • DOI: https://doi.org/10.1007/11541868_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28372-0

  • Online ISBN: 978-3-540-31820-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics