iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11539902_40
Fractal and Dynamical Language Methods to Construct Phylogenetic Tree Based on Protein Sequences from Complete Genomes | SpringerLink
Skip to main content

Fractal and Dynamical Language Methods to Construct Phylogenetic Tree Based on Protein Sequences from Complete Genomes

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3612))

Included in the following conference series:

Abstract

The complete genomes of living organisms have provided much information on their phylogenetic relationships. In the past few years, we proposed three alternative methods to model the noise background in the composition vector of protein sequences from a complete genome. The first method is based on the frequencies of the 20 kinds of amino acids appearing in the genome and the multiplicative model. The second method is based on the iterated function system model in fractal geometry. The last method is based on the relationship between a word and its two sub-words in the theory of symbolic dynamics. Here we introduce these methods. The complete genomes of prokaryotes and eukaryotes are selected to test these algorithms. Our distance-based phylogenetic tree of prokaryotes and eukaryotes agrees with the biologists’ “tree of life” based on the 16S-like rRNA genes in a majority of basic branches and most lower taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anh, V.V., Lau, K.S., Yu, Z.G.: Recognition of an organism from fragments of its complete genome. Phys. Rev. E 66, 031910 (2002)

    Article  Google Scholar 

  2. Brown, T.A.: Genetics, 3rd edn. Chapman & Hall, London (1998)

    Google Scholar 

  3. Brown, J.R., Doolittle, W.F.: Archaea and the prokaryote-to-eukaryote transition. Micro-biol. Mol. Biol. Rev. 61, 456–502 (1997)

    Google Scholar 

  4. Charlebois, R.L., Beiko, R.G., Ragan, M.A.: Branching out. Nature 421, 217–217 (2003)

    Article  Google Scholar 

  5. Chatton, E.: Titres et travaux scientifiques (Sette, Sottano, Italy) (1937)

    Google Scholar 

  6. Chu, K.H., Qi, J., Yu, Z.G., Anh, V.V.: Origin and Phylogeny of Chloroplasts revealed by a simple correlation analysis of complete genome. Mol. Biol. Evol. 21, 200–206 (2004)

    Article  Google Scholar 

  7. Doolittle, R.F.: Microbial genomes opened up. Nature 392, 339–342 (1998)

    Article  Google Scholar 

  8. Doolittle, R.F.: Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999)

    Article  Google Scholar 

  9. Eisen, J.A., Fraser, C.M.: Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707 (2003)

    Article  Google Scholar 

  10. Felsenstein, J.: PHYLIP (phylogeny Inference package) version 3.5c (1993), Distributed by the author at http://evolution.genetics.washington.edu/phylip.html

  11. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155, 279–284 (1967)

    Article  Google Scholar 

  12. Fitz-Gibbon, S.T., House, C.H.: Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27, 4218–4222 (1999)

    Article  Google Scholar 

  13. Gupta, R.S.: Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998)

    Google Scholar 

  14. Iwabe, N., et al.: Evolutionary relationship of archaebacteria, eubacteria and eukaryotes in-ferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86, 9355–9359 (1989)

    Article  Google Scholar 

  15. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P., Zhang, H.: An information-based sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics 17, 149–154 (2001)

    Article  Google Scholar 

  16. Lin, J., Gerstein, M.: Whole-genome trees based on the occurrence of folds and orthologs, implications for comparing genomes at different levels. Genome Res. 10, 808–818 (2000)

    Article  Google Scholar 

  17. Martin, W., Herrmann, R.G.: Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol. 118, 9–17 (1998)

    Article  Google Scholar 

  18. Mayr, E.: Two empires or three. Proc. Natl. Acad. Sci. U.S.A. 95, 9720–9723 (1998)

    Article  Google Scholar 

  19. Qi, J., Luo, H., Hao, B.: CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Research 32, W45–W47 (2004a)

    Article  Google Scholar 

  20. Qi, J., Wang, B., Hao, B.: Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J. Mol. Evol. 58, 1–11 (2004b)

    Article  Google Scholar 

  21. Ragan, M.A.: Detection of lateral gene transfer among microbial genomes. Curr. Opin. Gen. Dev. 11, 620–626 (2001)

    Article  Google Scholar 

  22. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  23. Sankoff, D., Leaduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 89, 6575–6579 (1992)

    Article  Google Scholar 

  24. Stuart, G.W., Moffet, K., Baker, S.: Integrated gene species phylogenies from unaligned whole genome protein sequences. Bioinformatics 18, 100–108 (2002a)

    Article  Google Scholar 

  25. Stuart, G.W., Moffet, K., Leader, J.J.: A comprehensive vertebrate phylogeny using vector representations of protein sequences from whole genomes. Mol. Biol. Evol. 19, 554–562 (2002b)

    Google Scholar 

  26. Tekaia, F., Lazcano, A., Dujon, B.: The genomic tree as revealed from whole proteome comparisons. Genome Res. 9, 550–557 (1999)

    Google Scholar 

  27. Vrscay, E.R.: Fractal Geometry and analysis. In: Belair, J. (ed.). NATO ASI series. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  28. Weiss, O., Jimenez, M.A., Herzel, H.: Information content of protein sequences. J. Theor. Biol. 206, 379–386 (2000)

    Article  Google Scholar 

  29. Woese, C.R.: Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987)

    Google Scholar 

  30. Woese, C.R.: The universal ansestor. Proc. Natl. Acad. Sci. USA 95, 6854–6859 (1998)

    Article  Google Scholar 

  31. Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579 (1990)

    Article  Google Scholar 

  32. Yu, Z.G., Anh, V.: Phylogenetic tree of prokaryotes based on complete genomes using fractal and correlation analyses. In: Proceedings of the Second Asia-Pacific Bioinformatics Conference, Dunedin, New Zealand. The Australian Computer Society Inc. (2004)

    Google Scholar 

  33. Yu, Z.G., Jiang, P.: Distance, correlation and mutual information among portraits of organisms based on complete genomes. Phys. Lett. A 286, 34–46 (2001)

    Article  MATH  Google Scholar 

  34. Yu, Z.G., Anh, V., Lau, K.S.: Multifractal and correlation analysis of protein sequences from complete genome. Phys. Rev. E. 68, 021913 (2003a)

    Article  Google Scholar 

  35. Yu, Z.G., Anh, V., Lau, K.S.: Chaos game representation, and multifractal and correlation analysis of protein sequences from complete genome based on detailed HP model. J. Theor. Biol. 226, 341–348 (2004)

    Article  MathSciNet  Google Scholar 

  36. Yu, Z.G., Anh, V., Lau, K.S., Chu, K.H.: The genomic tree of living organisms based on a fractal model. Phys. Lett. A 317, 293–302 (2003b)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yu, Z.G., Zhou, L.Q., Anh, V.V., Chu, K.H., Long, S.C., Deng, J.Q.: Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from whole genome without sequence alignment. J. Mol. Evol. 60, 538–545 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, ZG., Anh, V., Zhou, LQ. (2005). Fractal and Dynamical Language Methods to Construct Phylogenetic Tree Based on Protein Sequences from Complete Genomes. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_40

Download citation

  • DOI: https://doi.org/10.1007/11539902_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28320-1

  • Online ISBN: 978-3-540-31863-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics