iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/11408079_60
Mining Generalized Spatio-Temporal Patterns | SpringerLink
Skip to main content

Mining Generalized Spatio-Temporal Patterns

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3453))

Included in the following conference series:

Abstract

Spatio-temporal databases offer a rich repository and opportunities to develop techniques for discovering new types of spatio-temporal patterns. In this paper, we introduce a new class of spatio-temporal patterns, called the generalized spatio-temporal patterns, to describe the repeated sequences of events that occur within small neighbourhoods. Such patterns are crucial to the understanding of habitual patterns. To discover this class of patterns, we develop an algorithm GenSTMiner based on the idea of pattern growth approach, and introduce some optimization techniques that are used to reduce the number of candidates generated and minimize the size of the projected databases. Our performance study indicates that GenSTMiner is highly efficient and outperforms PrefixSpan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, R.C., Aggarwal, C.C., Prasad, V.V.V.: Depth first generation of long patterns. In: ACM SIGKDD (2001)

    Google Scholar 

  2. Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a bitmap representation. In: ACM SIGKDD (2002)

    Google Scholar 

  3. Han, J., Pei, J., Yin, Y.: Mining frequent patterns by pattern-growth: Methodology and implications. In: ACM SIGKDD (2001)

    Google Scholar 

  4. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: SSD (1995)

    Google Scholar 

  5. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.: Mining, indexing, and querying historical spatiotemporal data. In: ACM SIGKDD (2004)

    Google Scholar 

  6. Pei, J., Han, J., Mortazavi-Asl, B.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: ICDE (2001)

    Google Scholar 

  7. Peng, W., Chen, M.: Developing data allocation schemes by incremental mining of users moving patterns in a mobile computing system. In: IEEE TKDE (2003)

    Google Scholar 

  8. Shekhar, S., Huang, Y.: Discovery of spatial co-location patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 236. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 425. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences. In: ICDE (2004)

    Google Scholar 

  11. Wang, J., Hsu, W., Lee, M.L.: Discovering geographical features for location-based services. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 244–254. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Wang, J., Hsu, W., Lee, M.L., Wang, J.: Flowminer: Finding flow patterns in spatio-temporal databases. In: ICTAI (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Hsu, W., Lee, M.L. (2005). Mining Generalized Spatio-Temporal Patterns. In: Zhou, L., Ooi, B.C., Meng, X. (eds) Database Systems for Advanced Applications. DASFAA 2005. Lecture Notes in Computer Science, vol 3453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408079_60

Download citation

  • DOI: https://doi.org/10.1007/11408079_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25334-1

  • Online ISBN: 978-3-540-32005-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics