Abstract
Spatio-temporal databases offer a rich repository and opportunities to develop techniques for discovering new types of spatio-temporal patterns. In this paper, we introduce a new class of spatio-temporal patterns, called the generalized spatio-temporal patterns, to describe the repeated sequences of events that occur within small neighbourhoods. Such patterns are crucial to the understanding of habitual patterns. To discover this class of patterns, we develop an algorithm GenSTMiner based on the idea of pattern growth approach, and introduce some optimization techniques that are used to reduce the number of candidates generated and minimize the size of the projected databases. Our performance study indicates that GenSTMiner is highly efficient and outperforms PrefixSpan.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, R.C., Aggarwal, C.C., Prasad, V.V.V.: Depth first generation of long patterns. In: ACM SIGKDD (2001)
Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a bitmap representation. In: ACM SIGKDD (2002)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns by pattern-growth: Methodology and implications. In: ACM SIGKDD (2001)
Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: SSD (1995)
Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.: Mining, indexing, and querying historical spatiotemporal data. In: ACM SIGKDD (2004)
Pei, J., Han, J., Mortazavi-Asl, B.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: ICDE (2001)
Peng, W., Chen, M.: Developing data allocation schemes by incremental mining of users moving patterns in a mobile computing system. In: IEEE TKDE (2003)
Shekhar, S., Huang, Y.: Discovery of spatial co-location patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 236. Springer, Heidelberg (2001)
Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 425. Springer, Heidelberg (2001)
Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences. In: ICDE (2004)
Wang, J., Hsu, W., Lee, M.L.: Discovering geographical features for location-based services. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 244–254. Springer, Heidelberg (2004)
Wang, J., Hsu, W., Lee, M.L., Wang, J.: Flowminer: Finding flow patterns in spatio-temporal databases. In: ICTAI (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, J., Hsu, W., Lee, M.L. (2005). Mining Generalized Spatio-Temporal Patterns. In: Zhou, L., Ooi, B.C., Meng, X. (eds) Database Systems for Advanced Applications. DASFAA 2005. Lecture Notes in Computer Science, vol 3453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408079_60
Download citation
DOI: https://doi.org/10.1007/11408079_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25334-1
Online ISBN: 978-3-540-32005-0
eBook Packages: Computer ScienceComputer Science (R0)