iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/1-4020-3432-6_18
Neural Classification of HEP Experimental Data | SpringerLink
Skip to main content

Neural Classification of HEP Experimental Data

  • Conference paper
Biological and Artificial Intelligence Environments

Abstract

High Energy Physics (HEP) experiments require discrimination of a few interesting events among a huge number of background events generated during an experiment. Hierarchical triggering hardware architectures are needed to perform this tasks in real-time. In this paper three neural network models are studied as possible candidate for such systems. A modified Multi-Layer Perceptron (MLP) architecture and a EαNet architecture are compared against a traditional MLP. Test error below 25% is archived by all architectures in two different simulation strategies. EαNet performance are 1 to 2%better on test error with respect to the other two architectures using the smaller network topology. The design of a digital implementation of the proposed neural network is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beri, S.B., Bhat, P., Kaur, R., and Prosper, H. (2000). Top quark mass measurements using neural networks. Proc. of VII International Workshop on Advanced Computing and Analysis Techniques in Physics Research.

    Google Scholar 

  • Bhat, C. and Bhat, P. (2000). Using ensembles of neural networks in hep analysis. Proc. of VII International Workshop on Advanced Computing and Analysis Techniques in Physics Research.

    Google Scholar 

  • Ciobanu, C., Hughes, R., and Winer, B. (1999). Using neural networks to identify single top. CDF Note CDF/ANAL/TOP/GROUP/5370.

    Google Scholar 

  • Fent, J., Froechtenicht, W.,.Gaede, F, H. Getta, D. Goldner, and A. Gruber (1996). The realization of a second level neural network trigger for the h1 experiment at hera. Proc. of Fifth International Workshop On Software Engineering, Artificial Intelligence, Neural Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation.

    Google Scholar 

  • Gaglio, S., Pilato, G., Sorbello, F., and Vassallo, G. (2000). Using the hermite regression formula to design a neural architecture with automatic learning of the hidden activation functions. Lecture Notes in Artificial Intelligence, Springer-Verlag, 1792:226–237.

    Google Scholar 

  • Hays, C. and Kotwal, A.V. (2002). Using a neural network for electron identification. CDF Note CDF/DOC/ELECTRON/CDFR/5810.

    Google Scholar 

  • Janauschek, L., Dichtl, J., Eberl, M., Enzenberger, M., and Fent, J. (1999). Artificial neural networks as a second level trigger at the h1 experiment at hera performance analysis and physics results. Proc. of Sixth International Workshop On Software Engineering, Artificial Intelligence, Neural Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation.

    Google Scholar 

  • Pilato, G., Sorbello, F., and Vassallo, G. (2001). An innovative way to measure the quality of a neural network without the use of the test set. International Journal of Artificial Computational Intelligence, 5:31–36.

    Google Scholar 

  • Powell, M.J.D. (1968). Restart procedures for the conjugate gradient method. Mathematical Programming, 12:241–254.

    Article  MathSciNet  Google Scholar 

  • Sorbello, F., Gioiello, G.A.M., and Vitabile, S. (1999). Handwritten character recognition using a mlp. L.C. Jain and B. Lazzerini Eds., Knowledge-Based Intelligent Techniques in Character Recognition, CRC Press, pages 91–119.

    Google Scholar 

  • Tuttle, J.P., Hays, C., and Kotwal, A.V. (2001). Neural networks for electron and photon identification. CDF Note CDF/DOC/ELECTRON/CDFR/5791.

    Google Scholar 

  • Vitabile, S., Gentile, A., and Sorbello, F. (2002). A neural network based automatic road signs recognizer. Proc. of IEEE World Congress on Computational Intelligence — International Joint Conference on Neural Networks, 3:2315–2320.

    Google Scholar 

  • Vitabile, S., Gentile, A., and Sorbello, F. (2004). Real-time road signs recognition on a simd architecture. WSEAS Transactions on Circuits and Systems, 3:664–669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Vitabile, S., Pilato, G., Vassallo, G., Siniscalchi, S.M., Gentile, A., Sorbello, F. (2005). Neural Classification of HEP Experimental Data. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics