iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://search.worldcat.org/oclc/246650103
Representation theory a first course | WorldCat.org
Front cover image for Representation theory a first course

Representation theory a first course

The primary goal of these lectures is to introduce a beginner to the finite­ dimensional representations of Lie groups and Lie algebras. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e.
Print Book, German, 1991
Springer, New York, 1991
XV, 551 S. graph. Darst. 24 cm
9783540974956, 9780387974958, 9780387975276, 9783540975274, 3540974954, 0387974954, 0387975276, 3540975276
246650103
I: Finite Groups.- 1. Representations of Finite Groups.- 2. Characters.- 3. Examples; Induced Representations; Group Algebras; Real Representations.- 4. Representations of:$${\mathfrak{S}_d}$$Young Diagrams and Frobenius’s Character Formula.- 5. Representations of$${\mathfrak{A}_d}$$and$$G{L_2}\left( {{\mathbb{F}_q}} \right)$$.- 6. Weyl’s Construction.- II: Lie Groups and Lie Algebras.- 7. Lie Groups.- 8. Lie Algebras and Lie Groups.- 9. Initial Classification of Lie Algebras.- 10. Lie Algebras in Dimensions One, Two, and Three.- 11. Representations of$$\mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.- 12. Representations of$$\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$Part I.- 13. Representations of$$\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$Part II: Mainly Lots of Examples.- III: The Classical Lie Algebras and Their Representations.- 14. The General Set-up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra.- 15.$$\mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- 16. Symplectic Lie Algebras.- 17.$$\mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.- 18. Orthogonal Lie Algebras.- 19.$$\mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$\mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$and$$\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- 20. Spin Representations of$$\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- IV: Lie Theory.- 21. The Classification of Complex Simple Lie Algebras.- 22. $${g_2}$$and Other Exceptional Lie Algebras.- 23. Complex Lie Groups; Characters.- 24. Weyl Character Formula.- 25. More Character Formulas.- 26. Real Lie Algebras and Lie Groups.- Appendices.- A. On Symmetric Functions.- §A.1: Basic Symmetric Polynomials and Relations among Them.- §A.2: Proofs of the Determinantal Identities.- §A.3: Other Determinantal Identities.- B. On Multilinear Algebra.- §B.1: Tensor Products.- §B.2: Exterior and Symmetric Powers.- §B.3: Duals and Contractions.- C. On Semisimplicity.- §C.1: The Killing Form and Caftan’s Criterion.- §C.2: Complete Reducibility and the Jordan Decomposition.- §C.3: On Derivations.- D. Cartan Subalgebras.- §D.1: The Existence of Cartan Subalgebras.- §D.2: On the Structure of Semisimple Lie Algebras.- §D.3: The Conjugacy of Cartan Subalgebras.- §D.4: On the Weyl Group.- E. Ado’s and Levi’s Theorems.- §E.1: Levi’s Theorem.- §E.2: Ado’s Theorem.- F. Invariant Theory for the Classical Groups.- §F.1: The Polynomial Invariants.- §F.2: Applications to Symplectic and Orthogonal Groups.- §F.3: Proof of Capelli’s Identity.- Hints, Answers, and References.- Index of Symbols.
Literaturverz. S. 536 - 541