iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/8586283/
Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84 - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Dec 15;134(2-3):299-307.
doi: 10.1111/j.1574-6968.1995.tb07954.x.

Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84

Affiliations
Comparative Study

Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84

L S Pierson 3rd et al. FEMS Microbiol Lett. .

Abstract

The DNA sequence of five contiguous open reading frames encoding enzymes for phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84 was determined. These open reading frames were named phzF, phzA, phzB, phzC and phzD. Protein PhzF is similar to 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases of solanaceous plants. PhzA is similar to 2,3-dihydro-2,3-dihydroxybenzoate synthase (EntB) of Escherichia coli. PhzB shares similarity with both subunits of anthranilate synthase and the phzB open reading frame complemented an E. coli trpE mutant deficient in anthranilate synthase activity. Although phzC shares little similarity to known genes, its product is responsible for the conversion of phenazine-I-carboxylic acid to 2-hydroxy-phenazine-I-carboxylic acid. PhzD is similar to pyridoxamine phosphate oxidases. These results indicate that phenazine biosynthesis in P. aureofaciens shares similarities with the shikimic acid, enterochelin, and tryptophan biosynthetic pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources