iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/8001743/
Methionine restriction increases blood glutathione and longevity in F344 rats - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;8(15):1302-7.
doi: 10.1096/fasebj.8.15.8001743.

Methionine restriction increases blood glutathione and longevity in F344 rats

Affiliations

Methionine restriction increases blood glutathione and longevity in F344 rats

J P Richie Jr et al. FASEB J. 1994 Dec.

Abstract

Little is known about the biochemical mechanisms responsible for the biological aging process. Our previous results and those of others suggest that one possible mechanism is based on the loss of glutathione (GSH), a multifunctional tripeptide present in high concentrations in nearly all living cells. The recent finding that life-long dietary restriction of the GSH precursor methionine (Met) resulted in increased longevity in rats led us to hypothesize that adaptive changes in Met and GSH metabolism had occurred, leading to enhanced GSH status. To test this, blood and tissue GSH levels were measured at different ages throughout the life span in F344 rats on control or Met-restricted diets. Met restriction resulted in a 42% increase in mean and 44% increase in maximum life span, and in 43% lower body weight compared to controls (P < 0.001). Increases in blood GSH levels of 81% and 164% were observed in mature and old Met-restricted animals, respectively (P < 0.001). Liver was apparently the source for this increase as hepatic GSH levels decreased to 40% of controls. Except for a 25% decrease in kidney, GSH was unchanged in other tissues. All changes in GSH occurred as early as 2 months after the start of the diet. Altogether, these results suggest that dramatic adaptations in sulfur amino acid metabolism occur as a result of chronic Met restriction, leading to increases in blood GSH levels and conservation of tissue GSH during aging.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources