iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/7845466/
Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Feb 9;373(6514):527-31.
doi: 10.1038/373527a0.

Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion

Affiliations

Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion

M Pusch et al. Nature. .

Abstract

Chloride channels of the ClC family are important for the control of membrane excitability, cell volume regulation, and possibly transepithelial transport. Although lacking the typical voltage-sensor found in cation channels, gating of ClC channels is clearly voltage-dependent. For the prototype Torpedo channel ClC-0 (refs 11-15) we now show that channel opening is strongly facilitated by external chloride. Other less permeable anions can substitute for chloride with less efficiency. ClC-0 conductance shows an anomalous mole fraction behaviour with Cl-/NO3- mixtures, suggesting a multi-ion pore. Gating shows a similar anomalous behaviour, tightly linking permeation to gating. Eliminating a positive charge at the cytoplasmic end of domain D12 changes kinetics, concentration dependence and halide selectivity of gating, and alters pore properties such as ion selectivity, single-channel conductance and rectification. Taken together, our results strongly suggest that in these channels voltage-dependent gating is conferred by the permeating ion itself, acting as the gating charge.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources