Radon entry into houses having a crawl space
- PMID: 3980214
- DOI: 10.1097/00004032-198503000-00003
Radon entry into houses having a crawl space
Abstract
The transport of 222Rn from soil, through a vented crawl space, and into the living space of single-family residences was studied. Two houses were monitored in detail for periods of 5 and 7 weeks. With crawl space vents open, the average indoor 222Rn concentrations were 1.2 and 0.6 pCi 1.-1 (44 and 22 Bq m-3); with the vents sealed the averages rose to 2.2 and 1.0 pCi 1.-1 (81 and 37 Bq m-3). The data suggest that, of the Rn released into the crawl space from the soil beneath the house, a significant fraction, perhaps 50% or more, enters the living space. The effect of 3 meteorological parameters--wind speed, indoor-outdoor temperature difference, and rate of barometric pressure change--on Rn concentration and entry rate were examined. In 1 of the houses a higher temperature difference corresponded to a higher indoor concentration, suggesting that the increased infiltration rate is more than compensated by an increase in the Rn entry rate. On the other hand, a high wind speed tended to reduce the indoor concentration, presumably by increasing both cross-ventilation of the crawl space and the infiltration rate of the living space. Results suggest that Rn transport into the crawl space of at least 1 of the houses occurred by pressure-driven flow, rather than solely by molecular diffusion. The diffusion coefficient of 222Rn through polyethylene sheeting, such as was present on the ground beneath this house, was measured in the laboratory and found to range from 0.65 X 10(-7) cm2 s-1 at 11 degrees C to 1.6 X 10(-7) cm2 s-1 at 25 degrees C, implying that the maximum diffusive flux through the sheet was many times smaller than that necessary to account for the rate of Rn entry into the house. A third house was studied using a tracer gas injected into the crawl space at a controlled rate. The fraction of air leaving the crawl space that entered the living space ranged from 0.3 to 0.65, in good agreement with results for Rn transmission in the other 2 houses, assuming that the 222Rn flux into the crawl space was comparable to that which would have resulted from molecular diffusion from soil having a 222Rn diffusion length of 1.0 m. By sealing leaks in the floor of this house, the average infiltration rate was reduced by 25%, but the indoor concentration of the tracer gas remained constant.
Similar articles
-
Correlation among the terrestrial gamma radiation, the indoor air 222Rn, and the tap water 222Rn in Switzerland.Health Phys. 1989 Nov;57(5):753-9. doi: 10.1097/00004032-198911000-00008. Health Phys. 1989. PMID: 2592208
-
Modeling the effects of exhaust ventilation on 222Rn entry rates and indoor 222Rn concentrations.Health Phys. 1988 May;54(5):491-501. doi: 10.1097/00004032-198805000-00001. Health Phys. 1988. PMID: 3360603
-
Relationships between 222Rn dissolved in ground water supplies and indoor 222Rn concentrations in some Colorado front range houses.Health Phys. 1994 Sep;67(3):245-53. doi: 10.1097/00004032-199409000-00004. Health Phys. 1994. PMID: 8056590
-
Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments.Radiat Prot Dosimetry. 2014 Dec;162(3):351-63. doi: 10.1093/rpd/nct278. Epub 2013 Nov 14. Radiat Prot Dosimetry. 2014. PMID: 24243314 Review.
-
A Review of Indoor and Outdoor Radon Equilibrium Factors-part I: 222Rn.Health Phys. 2018 Oct;115(4):490-499. doi: 10.1097/HP.0000000000000909. Health Phys. 2018. PMID: 30148814 Review.
Cited by
-
Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.J Expo Sci Environ Epidemiol. 2014 Nov;24(6):564-71. doi: 10.1038/jes.2013.13. Epub 2013 Apr 3. J Expo Sci Environ Epidemiol. 2014. PMID: 23549403
-
Estimation of uranium and radon concentration in some drinking water samples of Upper Siwaliks, India.Environ Monit Assess. 2009 Jul;154(1-4):15-22. doi: 10.1007/s10661-008-0373-8. Epub 2008 Jun 20. Environ Monit Assess. 2009. PMID: 18566903
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical
Miscellaneous