iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/36580776/
Antimony (Sb) isotopic signature in water systems from the world's largest Sb mine, central China: Novel insights to trace Sb source and mobilization - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 15:446:130622.
doi: 10.1016/j.jhazmat.2022.130622. Epub 2022 Dec 16.

Antimony (Sb) isotopic signature in water systems from the world's largest Sb mine, central China: Novel insights to trace Sb source and mobilization

Affiliations

Antimony (Sb) isotopic signature in water systems from the world's largest Sb mine, central China: Novel insights to trace Sb source and mobilization

Bing Wen et al. J Hazard Mater. .

Abstract

The Xikuangshan (XKS) mine, the world's largest antimony (Sb) mine, was chosen for a detailed Sb isotopic signature study owing to its historical Sb contamination of water systems. Hydrochemical data, in particularδ123Sb values, were analyzed to identify the Sb source and predominant geochemical processes that affect Sb mobilization in different waters. The δ123Sb values of waters from the XKS Sb mine range from - 0.20‰ to + 0.73‰. In particular, the δ123Sb values of the main Feishuiyan stream do not significantly vary (+0.19‰-+0.24‰), while those of groundwater in different aquifers (-0.08‰ to +0.73‰) and mine water in different adits (-0.20‰ to +0.37‰) vary over a wide range. The relationships between δ123Sb values and Sb concentrations indicate that a simple dilution of Sb and a weak Sb adsorption onto Fe/Mn suspended particles and sediments in the Feishuiyan stream may occur, oxidative weathering and leaching infiltration of Sb-containing waste rocks and slags may cause variations in the δ123Sb values in groundwater, and Sb mobilization in the mine water is influenced by a combination of processes (oxidative dissolution, adsorption of Fe/Mn (hydr)oxides, and mixing). A conceptual hydrogeochemical model was summarized to elucidate the Sb source and mobilization in water systems from the XKS Sb mine.

Keywords: Antimony contamination; Antimony isotopes; Geochemical process; Water systems; Xikuangshan antimony mine.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources