iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/36083655
Solving the Sampling Problem of the Sycamore Quantum Circuits - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 26;129(9):090502.
doi: 10.1103/PhysRevLett.129.090502.

Solving the Sampling Problem of the Sycamore Quantum Circuits

Affiliations

Solving the Sampling Problem of the Sycamore Quantum Circuits

Feng Pan et al. Phys Rev Lett. .

Abstract

We study the problem of generating independent samples from the output distribution of Google's Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical supercomputers and has been used to demonstrate quantum supremacy. We propose a method to classically solve this problem by contracting the corresponding tensor network just once, and is massively more efficient than existing methods in generating a large number of uncorrelated samples with a target fidelity. For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have generated 1×10^{6} uncorrelated bitstrings s which are sampled from a distribution P[over ^](s)=|ψ[over ^](s)|^{2}, where the approximate state ψ[over ^] has fidelity F≈0.0037. The whole computation has cost about 15 h on a computational cluster with 512 GPUs. The obtained 1×10^{6} samples, the contraction code and contraction order are made public. If our algorithm could be implemented with high efficiency on a modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost a few dozens of seconds, which is faster than Google's quantum hardware.

PubMed Disclaimer

Similar articles

  • Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method.
    Pan F, Zhang P. Pan F, et al. Phys Rev Lett. 2022 Jan 21;128(3):030501. doi: 10.1103/PhysRevLett.128.030501. Phys Rev Lett. 2022. PMID: 35119890
  • Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction.
    Liu Y, Chen Y, Guo C, Song J, Shi X, Gan L, Wu W, Wu W, Fu H, Liu X, Chen D, Zhao Z, Yang G, Gao J. Liu Y, et al. Phys Rev Lett. 2024 Jan 19;132(3):030601. doi: 10.1103/PhysRevLett.132.030601. Phys Rev Lett. 2024. PMID: 38307065
  • Simulating Quantum Circuits Using Efficient Tensor Network Contraction Algorithms with Subexponential Upper Bound.
    Wahl TB, Strelchuk S. Wahl TB, et al. Phys Rev Lett. 2023 Nov 3;131(18):180601. doi: 10.1103/PhysRevLett.131.180601. Phys Rev Lett. 2023. PMID: 37977622
  • Quantum computational advantage via 60-qubit 24-cycle random circuit sampling.
    Zhu Q, Cao S, Chen F, Chen MC, Chen X, Chung TH, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang HL, Huo YH, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Wu Y, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Lu CY, Peng CZ, Zhu X, Pan JW. Zhu Q, et al. Sci Bull (Beijing). 2022 Feb 15;67(3):240-245. doi: 10.1016/j.scib.2021.10.017. Epub 2021 Oct 25. Sci Bull (Beijing). 2022. PMID: 36546072
  • Quantum supremacy using a programmable superconducting processor.
    Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Arute F, et al. Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23. Nature. 2019. PMID: 31645734

Cited by

  • Phase transitions in random circuit sampling.
    Morvan A, Villalonga B, Mi X, Mandrà S, Bengtsson A, Klimov PV, Chen Z, Hong S, Erickson C, Drozdov IK, Chau J, Laun G, Movassagh R, Asfaw A, Brandão LTAN, Peralta R, Abanin D, Acharya R, Allen R, Andersen TI, Anderson K, Ansmann M, Arute F, Arya K, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Paolo AD, Dunsworth A, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Livingston WP, Locharla A, Malone FD, Martin O, Martin S, McClean JR, McEwen M, Miao KC… See abstract for full author list ➔ Morvan A, et al. Nature. 2024 Oct;634(8033):328-333. doi: 10.1038/s41586-024-07998-6. Epub 2024 Oct 9. Nature. 2024. PMID: 39385051 Free PMC article.
  • Parallel Implementation of the Density Matrix Renormalization Group Method Achieving a Quarter petaFLOPS Performance on a Single DGX-H100 GPU Node.
    Menczer A, van Damme M, Rask A, Huntington L, Hammond J, Xantheas SS, Ganahl M, Legeza Ö. Menczer A, et al. J Chem Theory Comput. 2024 Oct 8;20(19):8397-8404. doi: 10.1021/acs.jctc.4c00903. Epub 2024 Sep 19. J Chem Theory Comput. 2024. PMID: 39297788 Free PMC article.
  • SoK: Benchmarking the Performance of a Quantum Computer.
    Wang J, Guo G, Shan Z. Wang J, et al. Entropy (Basel). 2022 Oct 14;24(10):1467. doi: 10.3390/e24101467. Entropy (Basel). 2022. PMID: 37420487 Free PMC article. Review.
  • Practical overview of image classification with tensor-network quantum circuits.
    Guala D, Zhang S, Cruz E, Riofrío CA, Klepsch J, Arrazola JM. Guala D, et al. Sci Rep. 2023 Mar 17;13(1):4427. doi: 10.1038/s41598-023-30258-y. Sci Rep. 2023. PMID: 36932074 Free PMC article.

LinkOut - more resources