Solving the Sampling Problem of the Sycamore Quantum Circuits
- PMID: 36083655
- DOI: 10.1103/PhysRevLett.129.090502
Solving the Sampling Problem of the Sycamore Quantum Circuits
Abstract
We study the problem of generating independent samples from the output distribution of Google's Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical supercomputers and has been used to demonstrate quantum supremacy. We propose a method to classically solve this problem by contracting the corresponding tensor network just once, and is massively more efficient than existing methods in generating a large number of uncorrelated samples with a target fidelity. For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have generated 1×10^{6} uncorrelated bitstrings s which are sampled from a distribution P[over ^](s)=|ψ[over ^](s)|^{2}, where the approximate state ψ[over ^] has fidelity F≈0.0037. The whole computation has cost about 15 h on a computational cluster with 512 GPUs. The obtained 1×10^{6} samples, the contraction code and contraction order are made public. If our algorithm could be implemented with high efficiency on a modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost a few dozens of seconds, which is faster than Google's quantum hardware.
Similar articles
-
Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method.Phys Rev Lett. 2022 Jan 21;128(3):030501. doi: 10.1103/PhysRevLett.128.030501. Phys Rev Lett. 2022. PMID: 35119890
-
Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction.Phys Rev Lett. 2024 Jan 19;132(3):030601. doi: 10.1103/PhysRevLett.132.030601. Phys Rev Lett. 2024. PMID: 38307065
-
Simulating Quantum Circuits Using Efficient Tensor Network Contraction Algorithms with Subexponential Upper Bound.Phys Rev Lett. 2023 Nov 3;131(18):180601. doi: 10.1103/PhysRevLett.131.180601. Phys Rev Lett. 2023. PMID: 37977622
-
Quantum computational advantage via 60-qubit 24-cycle random circuit sampling.Sci Bull (Beijing). 2022 Feb 15;67(3):240-245. doi: 10.1016/j.scib.2021.10.017. Epub 2021 Oct 25. Sci Bull (Beijing). 2022. PMID: 36546072
-
Quantum supremacy using a programmable superconducting processor.Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23. Nature. 2019. PMID: 31645734
Cited by
-
Phase transitions in random circuit sampling.Nature. 2024 Oct;634(8033):328-333. doi: 10.1038/s41586-024-07998-6. Epub 2024 Oct 9. Nature. 2024. PMID: 39385051 Free PMC article.
-
Parallel Implementation of the Density Matrix Renormalization Group Method Achieving a Quarter petaFLOPS Performance on a Single DGX-H100 GPU Node.J Chem Theory Comput. 2024 Oct 8;20(19):8397-8404. doi: 10.1021/acs.jctc.4c00903. Epub 2024 Sep 19. J Chem Theory Comput. 2024. PMID: 39297788 Free PMC article.
-
SoK: Benchmarking the Performance of a Quantum Computer.Entropy (Basel). 2022 Oct 14;24(10):1467. doi: 10.3390/e24101467. Entropy (Basel). 2022. PMID: 37420487 Free PMC article. Review.
-
Practical overview of image classification with tensor-network quantum circuits.Sci Rep. 2023 Mar 17;13(1):4427. doi: 10.1038/s41598-023-30258-y. Sci Rep. 2023. PMID: 36932074 Free PMC article.
LinkOut - more resources
Full Text Sources