Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity
- PMID: 35074874
- PMCID: PMC8812571
- DOI: 10.1073/pnas.2112812119
Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity
Erratum in
-
Correction for Fuller et al., Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity.Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2205611119. doi: 10.1073/pnas.2205611119. Epub 2022 Jul 13. Proc Natl Acad Sci U S A. 2022. PMID: 35858370 Free PMC article. No abstract available.
Abstract
For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.
Keywords: CMOS chip; biosensor; molecular electronics; single-molecule detection; single-molecule sequencing.
Copyright © 2022 the Author(s). Published by PNAS.
Conflict of interest statement
Competing interest statement: All authors having the Roswell affiliation (affiliation “a”) are employed by Roswell Biotechnologies, San Diego, CA 92121.
Figures
Similar articles
-
A Scalable CMOS Molecular Electronics Chip for Single-Molecule Biosensing.IEEE Trans Biomed Circuits Syst. 2022 Dec;16(6):1030-1043. doi: 10.1109/TBCAS.2022.3211420. Epub 2023 Feb 14. IEEE Trans Biomed Circuits Syst. 2022. PMID: 36191107
-
Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.Biosens Bioelectron. 2009 Mar 15;24(7):1995-2001. doi: 10.1016/j.bios.2008.10.012. Epub 2008 Nov 1. Biosens Bioelectron. 2009. PMID: 19054661 Free PMC article.
-
A digital CMOS-based 24×16 sensor array platform for fully automatic electrochemical DNA detection.Biosens Bioelectron. 2010 Dec 15;26(4):1414-9. doi: 10.1016/j.bios.2010.07.070. Epub 2010 Aug 4. Biosens Bioelectron. 2010. PMID: 20729052
-
Silicon Photonic Biosensors Using Label-Free Detection.Sensors (Basel). 2018 Oct 18;18(10):3519. doi: 10.3390/s18103519. Sensors (Basel). 2018. PMID: 30340405 Free PMC article. Review.
-
Issues of nanoelectronics: a possible roadmap.J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):235-66. doi: 10.1166/jnn.2002.115. J Nanosci Nanotechnol. 2002. PMID: 12908252 Review.
Cited by
-
The design and engineering of synthetic genomes.Nat Rev Genet. 2024 Nov 6. doi: 10.1038/s41576-024-00786-y. Online ahead of print. Nat Rev Genet. 2024. PMID: 39506144 Review.
-
Electric-Field-Driven Localization of Molecular Nanowires in Wafer-Scale Nanogap Electrodes.Nano Lett. 2024 Aug 21;24(33):10155-10160. doi: 10.1021/acs.nanolett.4c02329. Epub 2024 Aug 6. Nano Lett. 2024. PMID: 39107308 Free PMC article.
-
An electro-optical platform for the ultrasensitive detection of small extracellular vesicle sub-types and their protein epitope counts.iScience. 2024 Apr 30;27(6):109866. doi: 10.1016/j.isci.2024.109866. eCollection 2024 Jun 21. iScience. 2024. PMID: 38840839 Free PMC article.
-
Electronic Properties of DNA Origami Nanostructures Revealed by In Silico Calculations.J Phys Chem B. 2024 May 16;128(19):4646-4654. doi: 10.1021/acs.jpcb.4c00445. Epub 2024 May 7. J Phys Chem B. 2024. PMID: 38712954 Free PMC article.
-
Single molecule DNA origami nanoarrays with controlled protein orientation.Biophys Rev (Melville). 2022 Aug 18;3(3):031401. doi: 10.1063/5.0099294. eCollection 2022 Sep. Biophys Rev (Melville). 2022. PMID: 38505279 Free PMC article.
References
-
- Akkilic N., Geschwindner S., Höök F., Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 151, 111944 (2020). - PubMed
-
- Spitzberg J. D., Zrehen A., van Kooten X. F., Meller A., Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 31, e1900422 (2019). - PubMed
-
- Guo X., Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv. Mater. 25, 3397–3408 (2013). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources