iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/32450841/
CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 25;20(1):468.
doi: 10.1186/s12885-020-06970-7.

CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer

Affiliations

CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer

Kai-Yu Sun et al. BMC Cancer. .

Abstract

Background: Neoadjuvant chemotherapy is a promising treatment option for potential resectable gastric cancer, but patients' responses vary. We aimed to develop and validate a radiomics score (rad_score) to predict treatment response to neoadjuvant chemotherapy and to investigate its efficacy in survival stratification.

Methods: A total of 106 patients with neoadjuvant chemotherapy before gastrectomy were included (training cohort: n = 74; validation cohort: n = 32). Radiomics features were extracted from the pre-treatment portal venous-phase CT. After feature reduction, a rad_score was established by Randomised Tree algorithm. A rad_clinical_score was constructed by integrating the rad_score with clinical variables, so was a clinical score by clinical variables only. The three scores were validated regarding their discrimination and clinical usefulness. The patients were stratified into two groups according to the score thresholds (updated with post-operative clinical variables), and their survivals were compared.

Results: In the validation cohort, the rad_score demonstrated a good predicting performance in treatment response to the neoadjuvant chemotherapy (AUC [95% CI] =0.82 [0.67, 0.98]), which was better than the clinical score (based on pre-operative clinical variables) without significant difference (0.62 [0.42, 0.83], P = 0.09). The rad_clinical_score could not further improve the performance of the rad_score (0.70 [0.51, 0.88], P = 0.16). Based on the thresholds of these scores, the high-score groups all achieved better survivals than the low-score groups in the whole cohort (all P < 0.001).

Conclusion: The rad_score that we developed was effective in predicting treatment response to neoadjuvant chemotherapy and in stratifying patients with gastric cancer into different survival groups. Our proposed strategy is useful for individualised treatment planning.

Keywords: Neoadjuvant therapy; Stomach neoplasms; Tomography, X-ray computed.

PubMed Disclaimer

Conflict of interest statement

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Figures

Fig. 1
Fig. 1
Flow diagram of study population
Fig. 2
Fig. 2
A female patient was diagnosed as gastric cancer (T4aN2M0). CT before neoadjuvant chemotherapy (a) showed a mass-type tumor measured 25 mm in maximal depth and 80 mm in maximal length. CT after neoadjuvant chemotherapy (b) showed a shrunken mass measured 14 mm in depth and 40 mm in length. CT before neoadjuvant chemotherapy (c) showed the ROI delineated manually on figure (a). Pathology examination after surgery (d) showed residual tumor tissue (arrow) and infiltrated inflammatory cells (arrow head)
Fig. 3
Fig. 3
Receiver operating characteristics curves of the three scores in the training and validation cohorts. a in the training cohort; b in the validation cohort
Fig. 4
Fig. 4
Decision curve analysis for the rad_score, clinical score and rad_clinical score
Fig. 5
Fig. 5
Comparisons of the overall survivals between high-score group and low-score group respectively stratified by rad_score, clinical score and rad_clinical score. a stratified by rad_score; b stratified by clinical score; c stratified by rad_clinical_score

Similar articles

Cited by

References

    1. Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Degiuli M, Sasako M, Ponti A, Calvo F. Survival results of a multicentre phase II study to evaluate D2 gastrectomy for gastric cancer. Br J Cancer. 2004;90:1727–1732. doi: 10.1038/sj.bjc.6601761. - DOI - PMC - PubMed
    1. Sano T, Sasako M, Yamamoto S, et al. Cancer surgery: morbidity and mortality results from a prospective randomized controlled trial comparing d2 and extended Para-aortic lymphadenectomy—Japan clinical oncology group study 9501. J Clin Oncol. 2004;22:2767–2773. doi: 10.1200/JCO.2004.10.184. - DOI - PubMed
    1. Takahashi T, Saikawa Y, Kitagawa Y. Gastric cancer: current status of diagnosis and treatment. Cancers. 2013;5:48–63. doi: 10.3390/cancers5010048. - DOI - PMC - PubMed
    1. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20. doi: 10.1056/NEJMoa055531. - DOI - PubMed