Visualizing vibrational normal modes of a single molecule with atomically confined light
- PMID: 30944493
- DOI: 10.1038/s41586-019-1059-9
Visualizing vibrational normal modes of a single molecule with atomically confined light
Abstract
The internal vibrations of molecules drive the structural transformations that underpin chemistry and cellular function. While vibrational frequencies are measured by spectroscopy, the normal modes of motion are inferred through theory because their visualization would require microscopy with ångström-scale spatial resolution-nearly three orders of magnitude smaller than the diffraction limit in optics1. Using a metallic tip to focus light and taking advantage of the surface-enhanced Raman effect2 to amplify the signal from individual molecules, tip-enhanced Raman spectromicroscopy (TER-SM)3,4 reaches the requisite sub-molecular spatial resolution5, confirming that light can be confined in picocavities6-10 and anticipating the direct visualization of molecular vibrations11-13. Here, by using TER-SM at the precisely controllable junction of a cryogenic ultrahigh-vacuum scanning tunnelling microscope14-16, we show that ångström-scale resolution is attained at subatomic separation between the tip atom and a molecule in the quantum tunnelling regime of plasmons6,8,9,17. We record vibrational spectra within a single molecule, obtain images of normal modes and atomically parse the intramolecular charges and currents driven by vibrations. Our analysis provides a paradigm for optics in the atomistic near-field.
Comment in
-
Snapshots of vibrating molecules.Nature. 2019 Apr;568(7750):36-37. doi: 10.1038/d41586-019-00987-0. Nature. 2019. PMID: 30944489 No abstract available.
Similar articles
-
Tip-Enhanced Raman Spectromicroscopy of Co(II)-Tetraphenylporphyrin on Au(111): Toward the Chemists' Microscope.ACS Nano. 2017 Nov 28;11(11):11466-11474. doi: 10.1021/acsnano.7b06183. Epub 2017 Oct 12. ACS Nano. 2017. PMID: 28976729
-
Ion-Selective, Atom-Resolved Imaging of a 2D Cu2N Insulator: Field and Current Driven Tip-Enhanced Raman Spectromicroscopy Using a Molecule-Terminated Tip.ACS Nano. 2019 Jun 25;13(6):6363-6371. doi: 10.1021/acsnano.9b02744. Epub 2019 May 7. ACS Nano. 2019. PMID: 31046235
-
Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy.ACS Nano. 2017 May 23;11(5):5094-5102. doi: 10.1021/acsnano.7b02058. Epub 2017 May 5. ACS Nano. 2017. PMID: 28463555
-
Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review.Angew Chem Int Ed Engl. 2013 Jun 3;52(23):5940-54. doi: 10.1002/anie.201203849. Epub 2013 Apr 22. Angew Chem Int Ed Engl. 2013. PMID: 23610002 Review.
-
Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.Phys Chem Chem Phys. 2015 Jan 14;17(2):783-94. doi: 10.1039/c4cp03871a. Epub 2014 Nov 26. Phys Chem Chem Phys. 2015. PMID: 25424492 Review.
Cited by
-
Fluorescence from a single-molecule probe directly attached to a plasmonic STM tip.Nat Commun. 2024 Nov 10;15(1):9733. doi: 10.1038/s41467-024-53707-2. Nat Commun. 2024. PMID: 39523359 Free PMC article.
-
Impact of Surface Enhanced Raman Spectroscopy in Catalysis.ACS Nano. 2024 Oct 29;18(43):29337-29379. doi: 10.1021/acsnano.4c06192. Epub 2024 Oct 14. ACS Nano. 2024. PMID: 39401392 Free PMC article. Review.
-
Nanoscale Imaging of Palladium-Enhanced Photocatalytic Reduction of 4-Nitrothiophenol on Tungsten Disulfide Nanoplates.Nano Lett. 2024 Oct 7;24(41):13004-9. doi: 10.1021/acs.nanolett.4c03702. Online ahead of print. Nano Lett. 2024. PMID: 39373895 Free PMC article.
-
Selective excitation of vibrations in a single molecule.Nat Commun. 2024 Aug 14;15(1):6983. doi: 10.1038/s41467-024-51419-1. Nat Commun. 2024. PMID: 39143046 Free PMC article.
-
Nanoscale Chemical Probing of Metal-Supported Ultrathin Ferrous Oxide via Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy.Chem Biomed Imaging. 2024 Mar 21;2(5):345-351. doi: 10.1021/cbmi.4c00015. eCollection 2024 May 27. Chem Biomed Imaging. 2024. PMID: 38817320 Free PMC article.
References
-
- Betzig, E. Nobel lecture: single molecules, cells, and super-resolution optics. Rev. Mod. Phys. 87, 1153–1168 (2015). - DOI
-
- Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977). - DOI
-
- Jiang, N. et al. Tip-enhanced Raman spectroscopy: from concepts to practical applications. Chem. Phys. Lett. 659, 16–24 (2016). - DOI
-
- Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000). - DOI
-
- Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013). - DOI
LinkOut - more resources
Full Text Sources