iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/30545401/
A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Dec 13;6(1):221.
doi: 10.1186/s40168-018-0603-4.

A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist?

Affiliations
Comparative Study

A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist?

Jessica D Forbes et al. Microbiome. .

Abstract

Background: Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to compare the gut microbiota of patients with Crohn's disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates were collected from participants within a 2-month interval. This study aimed to identify common (or unique) taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.

Results: Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01). Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93 and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus were identified as important features for classification of subjects to CD and HC. In general, features identified by differential abundance testing were consistent with machine learning feature importance.

Conclusions: This study identified several gut microbial taxa with differential abundance patterns common to IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.

Keywords: 16S rRNA gene amplicon sequencing; Bacteria; Gut microbiota; Immune-mediated inflammatory disease; Inflammatory bowel disease; Machine learning classifiers; Multiple sclerosis; Rheumatoid arthritis; Taxonomic biomarkers.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent was obtained from patients and healthy controls prior to sample collection. The University of Manitoba’s Research Ethics Board approved this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Principal coordinate analysis (PCoA) based on the overall structure of the stool microbiota in all samples. Each data point represents an individual sample. PCoA was calculated using Bray-Curtis distances with a multivariate t-distribution. Ellipses represent an 80% confidence level. Color/shape is indicative of cohort
Fig. 2
Fig. 2
Alpha-diversity assessed by richness (Chao1, ACE) and diversity (Shannon, Simpson). Median estimates compared across cohorts using the Kruskal-Wallis test and Dunn’s post hoc tests for multiple comparisons. Boxes represent the interquartile range, lines indicate medians, and whiskers indicate the range. p values represent the overall FDR-corrected p values. aCD/UC; bCD/MS; cCD/RA; dCD/HC; eUC/MS; fUC/RA; gUC/HC; hMS/RA; iMS/HC; jRA/HC
Fig. 3
Fig. 3
Abundance of Gram-positive phyla. Median estimates compared across cohorts using the Kruskal-Wallis test and Dunn’s post hoc tests for multiple comparisons. Boxes represent the interquartile range, lines indicate medians, diamond indicates the mean, and whiskers indicate the range. p values represent the overall FDR-corrected p values. aCD/UC; bCD/MS; cCD/RA; dCD/HC; eUC/MS; fUC/RA; gUC/HC; hMS/RA; iMS/HC; jRA/HC
Fig. 4
Fig. 4
Feature importance from random forest classifiers for CD versus HCs in addition to feature abundance. Results from OTU and genus classifiers are shown in figures a and b, respectively. The corresponding genera of OTU features were labeled for the ease of interpretation. Each heatmap displays the abundance of the top ten features (rows) in samples (columns) according to the machine learning classifiers. The column bar colors represent the categories of the samples. Feature importance is shown on the right, and features are ordered in decreasing importance from top to bottom according to the mean decrease in Gini index

Similar articles

Cited by

References

    1. Bayry J, Radstake TR. Immune-mediated inflammatory diseases: progress in molecular pathogenesis and therapeutic strategies. Expert Rev Clin Immunol. 2013;9:297–299. doi: 10.1586/eci.13.10. - DOI - PubMed
    1. Wraith DC. The future of immunotherapy: a 20-year perspective. Front Immunol. 2017;8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712390/. Cited 15 Mar 2018. - PMC - PubMed
    1. Generali E, Ceribelli A, Stazi MA, Selmi C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun. 2017;83:51–61. doi: 10.1016/j.jaut.2017.04.005. - DOI - PubMed
    1. Ananthakrishnan AN. Environmental risk factors for inflammatory bowel diseases: a review. Dig Dis Sci. 2015;60:290–298. doi: 10.1007/s10620-014-3350-9. - DOI - PMC - PubMed
    1. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14:263–273. doi: 10.1016/S1474-4422(14)70267-4. - DOI - PubMed

Publication types

MeSH terms