iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/29735048/
Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Jun:108:183-191.
doi: 10.1016/j.foodres.2018.03.049. Epub 2018 Mar 19.

Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions

Affiliations
Comparative Study

Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions

Gabriele Rocchetti et al. Food Res Int. 2018 Jun.

Abstract

Interest in using polyphenols as modulators of the activity of starch digestive enzymes is increasing. The main purpose of this study was to investigate the role of phenolic compounds characterising pigmented maize flours in the modulation of in vitro starch digestibility. Flours from three different pigmented maize varieties were evaluated under cooking conditions and compared to common yellow maize (YM). The untargeted metabolomics-based approach comprehensively annotated around 300 phenolic compounds, with a high distribution of anthocyanins and phenolic acids (in free and bound fractions of maize samples) and significant differences across genotypes. Following in vitro starch digestion, the cooked pigmented maize flours showed higher resistant starch content (from 5.1 to 6.9 g /100 g dry matter), as well as lower starch hydrolysis index (HI) when compared to YM flour, with the "Rostrato Rosso" maize having the lowest HI (i.e., 61). Coherently, multivariate statistics following metabolomics showed the discrimination potential of anthocyanins' profile after cooking, characterising the "Rostrato Rosso" during in vitro digestion. These findings might be related to the modulation of enzyme activity by phenolic compounds during in vitro digestion. Therefore, the use of pigmented maize flours might help in the formulation of gluten-free foods with slowly digestible starches by exploiting the wide phenolic composition of these matrices.

Keywords: In vitro starch digestion; Metabolomics; Pigmented maize flours; Polyphenols; Resistant starch.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources