iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/29460150
pH Modulation of Voltage-Gated Sodium Channels - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018:246:147-160.
doi: 10.1007/164_2018_99.

pH Modulation of Voltage-Gated Sodium Channels

Affiliations
Review

pH Modulation of Voltage-Gated Sodium Channels

Colin H Peters et al. Handb Exp Pharmacol. 2018.

Abstract

Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.In this chapter, we review the mechanisms of proton block of the sodium channel pore and a suggested mode of action by which protons alter channel gating. We discuss the available data on isoform specificity of proton effects and tissue level effects. Finally, we review the role that protons play in disease and our own recent studies on proton-sensitizing mutants in cardiac and skeletal muscle sodium channels.

Keywords: Acidosis; Extracellular pH; Ischemia; Proton block; Voltage-gated sodium channel.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources