An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts
- PMID: 29189043
- PMCID: PMC5910040
- DOI: 10.1089/ast.2017.1766
An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts
Abstract
Effects of perchlorate salts prevalent on the surface of Mars are of significant interest to astrobiology from the perspective of potential life on the Red Planet. Halorubrum lacusprofundi, a cold-adapted halophilic Antarctic archaeon, was able to grow anaerobically on 0.04 M concentration of perchlorate. With increasing concentrations of perchlorate, growth was inhibited, with half-maximal growth rate in ca. 0.3 M NaClO4 and 0.1 M Mg(ClO4)2 under aerobic conditions. Magnesium ions were also inhibitory for growth, but at considerably higher concentrations, with half-maximal growth rate above 1 M. For a purified halophilic β-galactosidase enzyme of H. lacusprofundi expressed in Halobacterium sp. NRC-1, 50% inhibition of catalytic activity was observed at 0.88 M NaClO4 and 0.13 M Mg(ClO4)2. Magnesium ions were a more potent inhibitor of the enzyme than of cell growth. Steady-state kinetic analysis showed that Mg(ClO4)2 acts as a mixed inhibitor (KI = 0.04 M), with magnesium alone being a competitive inhibitor (KI = 0.3 M) and perchlorate alone acting as a very weak noncompetitive inhibitor (KI = 2 M). Based on the estimated concentrations of perchlorate salts on the surface of Mars, our results show that neither sodium nor magnesium perchlorates would significantly inhibit growth and enzyme activity of halophiles. This is the first study of perchlorate effects on a purified enzyme. Key Words: Halophilic archaea-Perchlorate-Enzyme inhibition-Magnesium. Astrobiology 18, 412-418.
Figures
Similar articles
-
Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi.BMC Biotechnol. 2013 Jan 16;13:3. doi: 10.1186/1472-6750-13-3. BMC Biotechnol. 2013. PMID: 23320757 Free PMC article.
-
Perchlorate Salts Exert a Dominant, Deleterious Effect on the Structure, Stability, and Activity of α-Chymotrypsin.Astrobiology. 2021 Apr;21(4):405-412. doi: 10.1089/ast.2020.2223. Astrobiology. 2021. PMID: 33784200
-
Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars.Extremophiles. 2014 Jan;18(1):75-80. doi: 10.1007/s00792-013-0594-9. Epub 2013 Oct 23. Extremophiles. 2014. PMID: 24150694
-
Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing.Extremophiles. 2020 Jan;24(1):31-41. doi: 10.1007/s00792-019-01126-3. Epub 2019 Aug 28. Extremophiles. 2020. PMID: 31463573 Free PMC article. Review.
-
[Plasmids of archaea as possible ancestors of DNA-containing viruses].Vopr Virusol. 2018;63(5):197-201. doi: 10.18821/0507-4088-2018-63-5-197-201. Vopr Virusol. 2018. PMID: 30550095 Review. Russian.
Cited by
-
Effects of temperature, chloride and perchlorate salt concentration on the metabolic activity of Deinococcus radiodurans.Extremophiles. 2024 Jul 24;28(3):34. doi: 10.1007/s00792-024-01351-5. Extremophiles. 2024. PMID: 39044042 Free PMC article.
-
Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media.Front Microbiol. 2022 Nov 29;13:992077. doi: 10.3389/fmicb.2022.992077. eCollection 2022. Front Microbiol. 2022. PMID: 36523839 Free PMC article.
-
The archaeal class Halobacteria and astrobiology: Knowledge gaps and research opportunities.Front Microbiol. 2022 Oct 13;13:1023625. doi: 10.3389/fmicb.2022.1023625. eCollection 2022. Front Microbiol. 2022. PMID: 36312929 Free PMC article.
-
Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity.Astrobiology. 2022 Jul;22(7):838-850. doi: 10.1089/ast.2021.0132. Epub 2022 Jun 22. Astrobiology. 2022. PMID: 35731161 Free PMC article.
-
Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions.Life (Basel). 2022 May 2;12(5):677. doi: 10.3390/life12050677. Life (Basel). 2022. PMID: 35629344 Free PMC article.
References
-
- Anderson I.J., DasSarma P., Lucas S., Copeland A., Lapidus A., Del Rio T.G., Tice H., Dalin E., Bruce D.C., Goodwin L., Pitluck S., Sims D., Brettin T.S., Detter J.C., Han C.S., Larimer F., Hauser L., Land M., Ivanova N., Richardson P., Cavicchioli R., DasSarma S., Woese C.R., and Kyrpides N.C. (2016) Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Stand Genomic Sci 11, doi: 10.1186/s40793-016-0194-2 - DOI - PMC - PubMed
-
- Bauer W.R. (2002) Structure of DNA in denaturing solvents. II. Premelting unwinding of the deoxyribonucleic acid duplex by aqueous magnesium perchlorate. Biochemistry 11:2915–2920 - PubMed
-
- Capes M.D., Coker J.A., Gessler R., Grinblat-Huse V., DasSarma S.L., Jacob C.G., Kim J.-M., DasSarma P., and DasSarma S. (2011) The information transfer system of halophilic archaea. Plasmid 65:77–101 - PubMed
-
- DasSarma P., Laye V.J., Harvey J., Reid C., Shultz J., Yarborough A., Lamb A., Koske-Phillips A., Herbst A., Molina F., Grah O., Phillips T., and DasSarma S. (2017) Survival of halophilic archaea in Earth's cold stratosphere. International Journal of Astrobiology 16:321–327
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous