iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/28167075/
Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 1:1660:58-66.
doi: 10.1016/j.brainres.2017.01.028. Epub 2017 Feb 3.

Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics

Affiliations

Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics

Oleg I Barygin et al. Brain Res. .

Abstract

It is known that some antidepressants and antipsychotics directly inhibit NMDA-type ionotropic glutamate receptors. In this study we systematically studied action of seven drugs (Fluoxetine, Citalopram, Desipramine, Amitriptyline, Atomoxetine, Chlorpromazine, and Clozapine) on NMDA receptors and Ca2+-permeable and -impermeable AMPA receptors in rat brain neurons by whole-cell patch-clamp technique. Except for weak effect of fluoxetine, all drugs were virtually inactive against Ca2+-impermeable AMPA receptors. Fluoxetine and desipramine significantly inhibited Ca2+-permeable AMPA receptors (IC50=43±7 and 105±12µM, respectively). Desipramine, atomoxetine and chlorpromazine inhibited NMDA receptors in clinically relevant low micromolar concentrations, while citalopram had only weak effect. All tested medicines have been clustered into two groups by their action on NMDA receptors: desipramine, amitriptyline, chlorpromazine, and atomoxetine display voltage- and magnesium-dependent open channel blocking mechanism. Action of fluoxetine and clozapine was found to be voltage- and magnesium-independent. All voltage-dependent compounds could be trapped in closed NMDA receptor channels. Possible contribution of NMDA receptor inhibition by certain antidepressants and antipsychotics to their analgesic effects in neuropathic pain is discussed.

Keywords: Antidepressants; Inhibition; Ionotropic glutamate receptors; Mechanisms; Neuropathic pain; Patch-clamp.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources