iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/26661899
The Microenvironment of Human Implantation: Determinant of Reproductive Success - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar;75(3):218-25.
doi: 10.1111/aji.12450. Epub 2015 Dec 12.

The Microenvironment of Human Implantation: Determinant of Reproductive Success

Affiliations
Review

The Microenvironment of Human Implantation: Determinant of Reproductive Success

Lois A Salamonsen et al. Am J Reprod Immunol. 2016 Mar.

Abstract

Successful implantation requires synchronous development of embryo and endometrium. Endometrial receptivity results from progesterone-induced differentiation of endometrial cells, generally achieved during the mid-secretory phase of the cycle. Failure to properly develop receptivity results in failed or inadequate implantation and hence no ongoing pregnancy. The blastocyst undergoes final development, apposition, attachment and initiates invasion of the endometrial epithelium within the uterine cavity. Thus, the microenvironment provided by uterine fluid, particularly glandular secretions, is essential for implantation. Analysis of endometrial fluid has identified cytokines, chemokines, proteases, antiproteases and other factors that modulate blastocyst functions relevant to implantation. Exosomes/microvesicular bodies released from the endometrium (and likely also the embryo) are present in uterine fluid. These can transfer miRNA, proteins and lipids between cells, thus providing endometrial-embryo communication in the peri-implantation period. Understanding the uterine microenvironment, and its effects on endometrial-embryo interactions, will provide opportunities to modify current infertility treatments to improve success rates.

Keywords: Biomarkers; embryo-maternal interactions; endometrial receptivity; exosomes; infertility; uterine fluid.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources