Approaches for modeling magnetic nanoparticle dynamics
- PMID: 25271360
- PMCID: PMC4183932
- DOI: 10.1615/critrevbiomedeng.2014010845
Approaches for modeling magnetic nanoparticle dynamics
Abstract
Magnetic nanoparticles are useful biological probes as well as therapeutic agents. Several approaches have been used to model nanoparticle magnetization dynamics for both Brownian as well as Neel rotation. Magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches, including the Stoner-Wohlfarth approach and stochastic approaches including thermal fluctuations. Non-equilibrium-related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation.
Figures
Similar articles
-
Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times.Phys Med Biol. 2014 Mar 7;59(5):1109-19. doi: 10.1088/0031-9155/59/5/1109. Epub 2014 Feb 20. Phys Med Biol. 2014. PMID: 24556943 Free PMC article.
-
Simulation of the magnetization dynamics of diluted ferrofluids in medical applications.Biomed Tech (Berl). 2013 Dec;58(6):601-9. doi: 10.1515/bmt-2013-0034. Biomed Tech (Berl). 2013. PMID: 24163220
-
Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.PLoS One. 2016 Mar 9;11(3):e0150856. doi: 10.1371/journal.pone.0150856. eCollection 2016. PLoS One. 2016. PMID: 26959493 Free PMC article.
-
Exchange bias effect in nanostructured magnetic oxides.J Nanosci Nanotechnol. 2014 Feb;14(2):1209-30. doi: 10.1166/jnn.2014.9107. J Nanosci Nanotechnol. 2014. PMID: 24749423 Review.
-
Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Nov;11(6):e1571. doi: 10.1002/wnan.1571. Epub 2019 Jun 26. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019. PMID: 31241251 Free PMC article. Review.
Cited by
-
Effects of Salt Concentration on a Magnetic Nanoparticle-Based Aggregation Assay with a Tunable Dynamic Range.Sensors (Basel). 2024 Sep 26;24(19):6241. doi: 10.3390/s24196241. Sensors (Basel). 2024. PMID: 39409281 Free PMC article.
-
Effect of particle size and composition on local magnetic hyperthermia of chitosan-Mg1-xCoxFe2O4 nanohybrid.Front Chem. 2024 Mar 7;12:1347423. doi: 10.3389/fchem.2024.1347423. eCollection 2024. Front Chem. 2024. PMID: 38524916 Free PMC article.
-
Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia.Nanoscale Adv. 2023 Jul 5;5(16):4080-4094. doi: 10.1039/d3na00197k. eCollection 2023 Aug 8. Nanoscale Adv. 2023. PMID: 37560417 Free PMC article.
-
Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances.Sensors (Basel). 2023 Apr 30;23(9):4411. doi: 10.3390/s23094411. Sensors (Basel). 2023. PMID: 37177614 Free PMC article. Review.
-
Effects of magnetically targeted iron oxide@polydopamine-labeled human umbilical cord mesenchymal stem cells in cerebral infarction in mice.Aging (Albany NY). 2023 Feb 28;15(4):1130-1142. doi: 10.18632/aging.204540. Aging (Albany NY). 2023. PMID: 36812482 Free PMC article.
References
-
- Haun JB, Yoon TJ, Lee H, Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(3):291–304. - PubMed
-
- Chung SH, Hoffmann A, Bader SD, Liu C, Kay B, Makowski L, Chen L. Biological sensors based on brownian relaxation of magnetic nanoparticles. Applied physics letters. 2004;85(14):2971–2973.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources