iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/25218301
Transcellular biosynthesis of eicosanoid lipid mediators - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr;1851(4):377-82.
doi: 10.1016/j.bbalip.2014.09.002. Epub 2014 Sep 16.

Transcellular biosynthesis of eicosanoid lipid mediators

Affiliations
Review

Transcellular biosynthesis of eicosanoid lipid mediators

Valérie Capra et al. Biochim Biophys Acta. 2015 Apr.

Abstract

The synthesis of oxygenated eicosanoids is the result of the coordinated action of several enzymatic activities, from phospholipase A2 that releases the polyunsaturated fatty acids from membrane phospholipids, to primary oxidative enzymes, such as cyclooxygenases and lipoxygenases, to isomerases, synthases and hydrolases that carry out the final synthesis of the biologically active metabolites. Cells possessing the entire enzymatic machinery have been studied as sources of bioactive eicosanoids, but early on evidence proved that biosynthetic intermediates, albeit unstable, could move from one cell type to another. The biosynthesis of bioactive compounds could therefore be the result of a coordinated effort by multiple cell types that has been named transcellular biosynthesis of the eicosanoids. In several cases cells not capable of carrying out the complete biosynthetic process, due to the lack of key enzymes, have been shown to efficiently contribute to the final production of prostaglandins, leukotrienes and lipoxins. We will review in vitro studies, complex functional models, and in vivo evidences of the transcellular biosynthesis of eicosanoids and the biological relevance of the metabolites resulting from this unique biosynthetic pathway. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".

Keywords: Arachidonic acid; Cyclooxygenases; Eicosanoids; Lipoxygenases; Transcellular biosynthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources