Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics
- PMID: 23898342
- PMCID: PMC3724048
- DOI: 10.3389/fpls.2013.00280
Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics
Abstract
Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype.
Keywords: IEF; abiotic stress; heavy metals; hyperaccumulator/hypertolerance; proteomics.
Figures
Similar articles
-
Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants.Metallomics. 2020 Jun 24;12(6):840-859. doi: 10.1039/d0mt00043d. Metallomics. 2020. PMID: 32432639 Review.
-
Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance.Planta. 2016 Mar;243(3):577-89. doi: 10.1007/s00425-015-2429-7. Epub 2015 Nov 7. Planta. 2016. PMID: 26547194
-
The proteomics of heavy metal hyperaccumulation by plants.J Proteomics. 2013 Feb 21;79:133-45. doi: 10.1016/j.jprot.2012.12.006. Epub 2012 Dec 23. J Proteomics. 2013. PMID: 23268120 Review.
-
Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals.Int J Mol Sci. 2022 Aug 19;23(16):9335. doi: 10.3390/ijms23169335. Int J Mol Sci. 2022. PMID: 36012598 Free PMC article. Review.
-
Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.J Trace Elem Med Biol. 2005;18(4):339-53. doi: 10.1016/j.jtemb.2005.02.007. J Trace Elem Med Biol. 2005. PMID: 16028496 Review.
Cited by
-
Metal(loid) speciation and transformation by aerobic methanotrophs.Microbiome. 2021 Jul 6;9(1):156. doi: 10.1186/s40168-021-01112-y. Microbiome. 2021. PMID: 34229757 Free PMC article. Review.
-
Long- and short-term protective responses of rice seedling to combat Cr(VI) toxicity.Environ Sci Pollut Res Int. 2018 Dec;25(36):36163-36172. doi: 10.1007/s11356-018-3422-z. Epub 2018 Oct 25. Environ Sci Pollut Res Int. 2018. PMID: 30362036
-
Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review.Plant Signal Behav. 2018;13(9):e1507401. doi: 10.1080/15592324.2018.1507401. Epub 2018 Sep 6. Plant Signal Behav. 2018. PMID: 30188762 Free PMC article. Review.
-
Humic Substances: Determining Potential Molecular Regulatory Processes in Plants.Front Plant Sci. 2018 Mar 13;9:263. doi: 10.3389/fpls.2018.00263. eCollection 2018. Front Plant Sci. 2018. PMID: 29593751 Free PMC article. Review.
-
Enrichment and Identification of the Most Abundant Zinc Binding Proteins in Developing Barley Grains by Zinc-IMAC Capture and Nano LC-MS/MS.Proteomes. 2018 Jan 17;6(1):3. doi: 10.3390/proteomes6010003. Proteomes. 2018. PMID: 29342075 Free PMC article.
References
-
- Assunção A. G. L., Martins P. D. A. C., Folter S. D. E., Vooijs R., Schat H., Aarts M. G. M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 3, 217–226 10.1111/j.1365-3040.2001.00666.x - DOI
-
- Baker A. J. M., McGrath S. P., Reeves R. D., Smith J. A. C. (2000). Chapter 5. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, in Phytoremediation of Contamined Soil and Water, eds Terry N., Bañuelos G. (Boca Raton, FL: CRC Press; ), 85–107
LinkOut - more resources
Full Text Sources
Other Literature Sources