iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/23508038
The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 6:4:18.
doi: 10.3389/fendo.2013.00018. eCollection 2013.

The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions

Affiliations

The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions

Ayumu Inutsuka et al. Front Endocrinol (Lausanne). .

Abstract

The hypothalamus monitors body homeostasis and regulates various behaviors such as feeding, thermogenesis, and sleeping. Orexins (also known as hypocretins) were identified as endogenous ligands for two orphan G-protein-coupled receptors in the lateral hypothalamic area. They were initially recognized as regulators of feeding behavior, but they are mainly regarded as key modulators of the sleep/wakefulness cycle. Orexins activate orexin neurons, monoaminergic and cholinergic neurons in the hypothalamus/brainstem regions, to maintain a long, consolidated awake period. Anatomical studies of neural projections from/to orexin neurons and phenotypic characterization of transgenic mice revealed various roles for orexin neurons in the coordination of emotion, energy homeostasis, reward system, and arousal. For example, orexin neurons are regulated by peripheral metabolic cues, including ghrelin, leptin, and glucose concentration. This suggests that they may provide a link between energy homeostasis and arousal states. A link between the limbic system and orexin neurons might be important for increasing vigilance during emotional stimuli. Orexins are also involved in reward systems and the mechanisms of drug addiction. These findings suggest that orexin neurons sense the outer and inner environment of the body and maintain the proper wakefulness level of animals for survival. This review discusses the mechanism by which orexins maintain sleep/wakefulness states and how this mechanism relates to other systems that regulate emotion, reward, and energy homeostasis.

Keywords: hypocretin; hypothalamus; neuropeptide; optogenetics; orexin; sleep.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Schematic representation of inputs and outputs of orexin neurons. Orexin neurons are found only in the lateral hypothalamic area but project throughout the entire central nervous system. Red arrows show excitatory projections, while blue lines show inhibitory projections. Abbreviations: Arc, arcuate nucleus; DR, dorsal raphe nucleus; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; PPT, pedunculopontine tegmental nucleus; TMN, tuberomammillary nucleus; VTA, ventral tegmental area; VLPO, ventrolateral preoptic nucleus.
FIGURE 2
FIGURE 2
A schematic diagram to illustrate the integrative physiological roles of orexin neurons. Orexin neurons regulate various physiological phenomena such as wakefulness, feeding, reward, and thermogenesis. The body energy level influences orexin neuronal activity to coordinate arousal and energy homeostasis. Inputs from the limbic system may be important to regulate the activity of orexin neurons to evoke emotional arousal or fear-related responses. Abbreviations: 5-HT, serotonin; ACh, acetylcholine; Arc, arcuate nucleus; BAT, brown adipose tissue; BST, bed nucleus of the stria terminalis; DA, dopamine; DR, dorsal raphe nucleus; GABA, gamma-aminobutyric acid; HA, histamine; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; LHA, lateral hypothalamic area; NA, noradrenalin; NAc, nucleus accumbens; NPY, neuropeptide Y; POA, preoptic area; POMC, proopiomelanocortin; PPT, pedunculopontine tegmental nucleus; SCN, suprachiasmatic nucleus; TMN, tuberomammillary nucleus; VTA, ventral tegmental area.

Similar articles

Cited by

References

    1. Abrahamson E. E., Leak R. K., Moore R. Y. (2001). The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12 435–440 - PubMed
    1. Adamantidis A. R., Zhang F., Aravanis A. M., Deisseroth K, De Lecea L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450 420–424 - PMC - PubMed
    1. Alexander G. M., Rogan S. C., Abbas A. I., Armbruster B. N., Pei Y., Allen J. A., et al. (2009). Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63 27–39 - PMC - PubMed
    1. Allen Y. S., Adrian T. E., Allen J. M., Tatemoto K., Crow T. J., Bloom S. R., et al. (1983). Neuropeptide Y distribution in the rat brain. Science 221 877–879 - PubMed
    1. Armbruster B. N., Li X., Pausch M. H., Herlitze S., Roth B. L. (2007). Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. U.S.A. 104 5163–5168 - PMC - PubMed