iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/23246627
Current status of gene therapy for brain tumors - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr;161(4):339-54.
doi: 10.1016/j.trsl.2012.11.003. Epub 2012 Dec 11.

Current status of gene therapy for brain tumors

Affiliations

Current status of gene therapy for brain tumors

Andrea M Murphy et al. Transl Res. 2013 Apr.

Abstract

Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.

PubMed Disclaimer

Figures

Fig 1
Fig 1
Gene therapy strategies for brain tumors.

Similar articles

Cited by

References

    1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507. - PubMed
    1. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66. - PubMed
    1. Dunn GP, Rinne ML, Wykosky J, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26:756–84. - PMC - PubMed
    1. Cheng L, Bao S, Rich JN. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol. 2010;80:654–65. - PMC - PubMed
    1. Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13:e83–9. - PubMed

Publication types