iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/23016593
Androgen actions on the human hair follicle: perspectives - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar;22(3):168-71.
doi: 10.1111/exd.12024. Epub 2012 Sep 28.

Androgen actions on the human hair follicle: perspectives

Affiliations
Free article
Review

Androgen actions on the human hair follicle: perspectives

Shigeki Inui et al. Exp Dermatol. 2013 Mar.
Free article

Abstract

Androgens stimulate beard growth but suppress hair growth in androgenetic alopecia (AGA). This condition is known as 'androgen paradox'. Human pilosebaceous units possess enough enzymes to form the active androgens testosterone and dihydrotestosterone. In hair follicles, 5α-reductase type 1 and 2, androgen receptors (AR) and AR coactivators can regulate androgen sensitivity of dermal papillae (DP). To regulate hair growth, androgens stimulate production of IGF-1 as positive mediators from beard DP cells and of TGF-β1, TGF-β2, dickkopf1 and IL-6 as negative mediators from balding DP cells. In addition, androgens enhance inducible nitric oxide synthase from occipital DP cells and stem cell factor for positive regulation of hair growth in beard and negative regulation of balding DP cells. Moreover, AGA involves crosstalk between androgen and Wnt/β-catenin signalling. Finally, recent data on susceptibility genes have provided us with the impetus to investigate the molecular pathogenesis of AGA.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms