dbCAN: a web resource for automated carbohydrate-active enzyme annotation
- PMID: 22645317
- PMCID: PMC3394287
- DOI: 10.1093/nar/gks479
dbCAN: a web resource for automated carbohydrate-active enzyme annotation
Abstract
Carbohydrate-active enzymes (CAZymes) are very important to the biotech industry, particularly the emerging biofuel industry because CAZymes are responsible for the synthesis, degradation and modification of all the carbohydrates on Earth. We have developed a web resource, dbCAN (http://csbl.bmb.uga.edu/dbCAN/annotate.php), to provide a capability for automated CAZyme signature domain-based annotation for any given protein data set (e.g. proteins from a newly sequenced genome) submitted to our server. To accomplish this, we have explicitly defined a signature domain for every CAZyme family, derived based on the CDD (conserved domain database) search and literature curation. We have also constructed a hidden Markov model to represent the signature domain of each CAZyme family. These CAZyme family-specific HMMs are our key contribution and the foundation for the automated CAZyme annotation.
Figures
Similar articles
-
dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation.Nucleic Acids Res. 2018 Jan 4;46(D1):D516-D521. doi: 10.1093/nar/gkx894. Nucleic Acids Res. 2018. PMID: 30053267 Free PMC article.
-
dbCAN2: a meta server for automated carbohydrate-active enzyme annotation.Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101. doi: 10.1093/nar/gky418. Nucleic Acids Res. 2018. PMID: 29771380 Free PMC article.
-
dbCAN3: automated carbohydrate-active enzyme and substrate annotation.Nucleic Acids Res. 2023 Jul 5;51(W1):W115-W121. doi: 10.1093/nar/gkad328. Nucleic Acids Res. 2023. PMID: 37125649 Free PMC article.
-
The continuing expansion of CAZymes and their families.Curr Opin Chem Biol. 2019 Dec;53:82-87. doi: 10.1016/j.cbpa.2019.08.004. Epub 2019 Sep 21. Curr Opin Chem Biol. 2019. PMID: 31550558 Review.
-
Carbohydrate-Active enZyme (CAZyme) enabled glycoengineering for a sweeter future.Curr Opin Biotechnol. 2020 Dec;66:283-291. doi: 10.1016/j.copbio.2020.09.006. Epub 2020 Nov 8. Curr Opin Biotechnol. 2020. PMID: 33176229 Review.
Cited by
-
Reclassification of two Nocardiopsis species using whole genome analysis.Antonie Van Leeuwenhoek. 2024 Nov 20;118(1):28. doi: 10.1007/s10482-024-02038-9. Antonie Van Leeuwenhoek. 2024. PMID: 39562378
-
Ubiquitous genome streamlined Acidobacteriota in freshwater environments.ISME Commun. 2024 Oct 22;4(1):ycae124. doi: 10.1093/ismeco/ycae124. eCollection 2024 Jan. ISME Commun. 2024. PMID: 39544963 Free PMC article.
-
Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach.Microb Genom. 2024 Nov;10(11):001311. doi: 10.1099/mgen.0.001311. Microb Genom. 2024. PMID: 39504117 Free PMC article.
-
Characterizing the gut microbiome of diarrheal mink under farmed conditions: A metagenomic analysis.PLoS One. 2024 Oct 30;19(10):e0312821. doi: 10.1371/journal.pone.0312821. eCollection 2024. PLoS One. 2024. PMID: 39475924 Free PMC article.
-
What lies behind the large genome of Colletotrichum lindemuthianum.Front Fungal Biol. 2024 Oct 15;5:1459229. doi: 10.3389/ffunb.2024.1459229. eCollection 2024. Front Fungal Biol. 2024. PMID: 39473581 Free PMC article.
References
-
- Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331:463–467. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources