GWAMA: software for genome-wide association meta-analysis
- PMID: 20509871
- PMCID: PMC2893603
- DOI: 10.1186/1471-2105-11-288
GWAMA: software for genome-wide association meta-analysis
Abstract
Background: Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies.
Results: We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results.
Conclusions: The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.
Figures
Similar articles
-
SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.BMC Bioinformatics. 2017 Jan 11;18(1):25. doi: 10.1186/s12859-016-1437-3. BMC Bioinformatics. 2017. PMID: 28077070 Free PMC article.
-
Meta-analysis of sex-specific genome-wide association studies.Genet Epidemiol. 2010 Dec;34(8):846-53. doi: 10.1002/gepi.20540. Genet Epidemiol. 2010. PMID: 21104887 Free PMC article.
-
Model-based assessment of replicability for genome-wide association meta-analysis.Nat Commun. 2021 Mar 30;12(1):1964. doi: 10.1038/s41467-021-21226-z. Nat Commun. 2021. PMID: 33785739 Free PMC article.
-
Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis.Stat Appl Genet Mol Biol. 2013 Jun;12(3):285-308. doi: 10.1515/sagmb-2012-0016. Stat Appl Genet Mol Biol. 2013. PMID: 23629457 Review.
-
[Genome-wide association study on complex diseases: genetic statistical issues].Yi Chuan. 2008 May;30(5):543-9. doi: 10.3724/sp.j.1005.2008.00543. Yi Chuan. 2008. PMID: 18487142 Review. Chinese.
Cited by
-
A framework for conducting GWAS using repeated measures data with an application to childhood BMI.Nat Commun. 2024 Nov 20;15(1):10067. doi: 10.1038/s41467-024-53687-3. Nat Commun. 2024. PMID: 39567492 Free PMC article.
-
Accounting for heterogeneity due to environmental sources in meta-analysis of genome-wide association studies.Commun Biol. 2024 Nov 14;7(1):1512. doi: 10.1038/s42003-024-07236-9. Commun Biol. 2024. PMID: 39543362 Free PMC article.
-
Effect of genetically predicted sclerostin on cardiovascular biomarkers, risk factors, and disease outcomes.Nat Commun. 2024 Nov 13;15(1):9832. doi: 10.1038/s41467-024-53623-5. Nat Commun. 2024. PMID: 39537602 Free PMC article.
-
HybridQC: A SNP-Based Quality Control Application for Rapid Hybridity Verification in Diploid Plants.Genes (Basel). 2024 Sep 26;15(10):1252. doi: 10.3390/genes15101252. Genes (Basel). 2024. PMID: 39457376 Free PMC article.
-
Identification of novel proteins for coronary artery disease by integrating GWAS data and human plasma proteomes.Heliyon. 2024 Sep 19;10(19):e38036. doi: 10.1016/j.heliyon.2024.e38036. eCollection 2024 Oct 15. Heliyon. 2024. PMID: 39386869 Free PMC article.
References
-
- Zeggini E, Scott L, Saxena R, Voight B, Marchini J, Hu T, de Bakker P, Abecasis G, Almgren P, Andersen G. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature genetics. 2008;40(5):638–645. doi: 10.1038/ng.120. - DOI - PMC - PubMed
-
- Lindgren C, Heid I, Randall J, Lamina C, Steinthorsdottir V, Qi L, Speliotes E, Thorleifsson G, Willer C, Herrera B. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genetics. 2009;5(6) doi: 10.1371/journal.pgen.1000508. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources