Multidimensional optical fractionation of colloidal particles with holographic verification
- PMID: 20366628
- DOI: 10.1103/PhysRevLett.104.028302
Multidimensional optical fractionation of colloidal particles with holographic verification
Abstract
The trajectories of colloidal particles driven through a periodic potential energy landscape can become kinetically locked-in to directions dictated by the landscape's symmetries. When the landscape is realized with a structured light field, the path a given particle follows has been predicted to depend exquisitely sensitively on such properties as the particle's size and refractive index. We confirm these predictions by measuring the transport of colloidal silica spheres through arrays of holographic optical traps, using holographic video microscopy to track individual spheres' motions in three dimensions and simultaneously to measure each sphere's radius and refractive index with part-per-thousand resolution. These measurements demonstrate optical fractionation's ability to sort with part-per-thousand resolution on multiple characteristics simultaneously.
Similar articles
-
Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051407. doi: 10.1103/PhysRevE.82.051407. Epub 2010 Nov 30. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 21230479
-
Colloidal transport through optical tweezer arrays.Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 1):011407. doi: 10.1103/PhysRevE.75.011407. Epub 2007 Jan 18. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17358150
-
Characterizing and tracking single colloidal particles with video holographic microscopy.Opt Express. 2007 Dec 24;15(26):18275-82. doi: 10.1364/oe.15.018275. Opt Express. 2007. PMID: 19551125
-
Probing the micro-rheological properties of aerosol particles using optical tweezers.Rep Prog Phys. 2014 Jul;77(7):074601. doi: 10.1088/0034-4885/77/7/074601. Epub 2014 Jul 4. Rep Prog Phys. 2014. PMID: 24994710 Review.
-
Cellular and colloidal separation using optical forces.Methods Cell Biol. 2007;82:467-95. doi: 10.1016/S0091-679X(06)82017-0. Methods Cell Biol. 2007. PMID: 17586269 Review.
Cited by
-
Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.Sci Rep. 2022 Jun 17;12(1):10229. doi: 10.1038/s41598-022-13095-3. Sci Rep. 2022. PMID: 35715431 Free PMC article.
-
Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications.Adv Opt Mater. 2021 Jul 5;9(13):2100050. doi: 10.1002/adom.202100050. Epub 2021 Apr 17. Adv Opt Mater. 2021. PMID: 34434691 Free PMC article.
-
Continuous-feed optical sorting of aerosol particles.Opt Express. 2016 Jun 27;24(13):14100-23. doi: 10.1364/OE.24.014100. Opt Express. 2016. PMID: 27410570 Free PMC article.
-
Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets.J Appl Phys. 2015 Nov 28;118(20):203904. doi: 10.1063/1.4936219. Epub 2015 Nov 24. J Appl Phys. 2015. PMID: 26648596 Free PMC article.
-
Brownian motion in a speckle light field: tunable anomalous diffusion and selective optical manipulation.Sci Rep. 2014 Feb 5;4:3936. doi: 10.1038/srep03936. Sci Rep. 2014. PMID: 24496461 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources