iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/20105295/
Detection of dengue virus in saliva and urine by real time RT-PCR - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2010 Jan 27:7:22.
doi: 10.1186/1743-422X-7-22.

Detection of dengue virus in saliva and urine by real time RT-PCR

Affiliations
Case Reports

Detection of dengue virus in saliva and urine by real time RT-PCR

Telma R Poloni et al. Virol J. .

Abstract

Early diagnosis of dengue virus (DENV) infection is important for patient management and control of dengue outbreaks. The objective of this study was to analyze the usefulness of urine and saliva samples for early diagnosis of DENV infection by real time RT-PCR. Two febrile patients, who have been attended at the General Hospital of the School of Medicine of Ribeirao Preto, Sao Paulo University were included in the study. Serum, urine and saliva samples collected from both patients were subjected to real time RT-PCR for DENV detection and quantification. Dengue RNA was detected in serum, urine and saliva samples of both patients. Patient 1 was infected with DENV-2 and patient 2 with DENV-3. Data presented in this study suggest that urine and saliva could be used as alternative samples for early diagnosis of dengue virus infection when blood samples are difficult to obtain, e.g., in newborns and patients with hemorrhagic syndromes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic tree based on the E gene sequences using Neighbor-joining (NJ) method showing the relationship of viruses isolated in this study with 72 global samples of DENV. Tamura and Nei (TrN+I+G) nucleotide substitution model was used with a proportion of invariable sites (I) of 0.2096 and gamma distribution (G) of 0.6072 using the hierarchical likelihood ratio test (hLTR). The YF17D (9627244) was used as outgroup. Horizontal branch lengths are drawn to scale. Viruses isolated from patients 1 and 2 are underlined. GenBank accession numbers are indicated in parenthesis.

Similar articles

Cited by

References

    1. Halstead S. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–481. doi: 10.1126/science.3277268. - DOI - PubMed
    1. Gubler D. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002;10:100–103. doi: 10.1016/S0966-842X(01)02288-0. - DOI - PubMed
    1. Halstead S. Dengue. Lancet. 2007;370:1644–1652. doi: 10.1016/S0140-6736(07)61687-0. - DOI - PubMed
    1. Callahan J, Wu S, Dion-Schultz A, Mangold B, Peruski L, Watts D, Porter K, Murphy G, Suharyono W, King C, Hayes CG, Temenak JJ. Development and evaluation of serotype- and group-specific fluorogenic reverse transcriptase PCR (TaqMan) assays for dengue virus. J Clin Microbiol. 2001;39:4119–4124. doi: 10.1128/JCM.39.11.4119-4124.2001. - DOI - PMC - PubMed
    1. Drosten C, Göttig S, Schilling S, Asper M, Panning M, Schmitz H, Günther S. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:2323–2330. doi: 10.1128/JCM.40.7.2323-2330.2002. - DOI - PMC - PubMed