iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/20059549
How microorganisms avoid phagocyte attraction - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 May;34(3):395-414.
doi: 10.1111/j.1574-6976.2009.00202.x. Epub 2009 Dec 11.

How microorganisms avoid phagocyte attraction

Affiliations
Free article
Review

How microorganisms avoid phagocyte attraction

Jovanka Bestebroer et al. FEMS Microbiol Rev. 2010 May.
Free article

Abstract

Microorganisms have developed several mechanisms to modulate the host immune system to increase their survival and propagation in the host. Their presence in the host is not only revealed by self-produced peptides but also through host-derived chemokines and active complement fragments. These so-called chemoattractants are recognized by G protein-coupled receptors (GPCRs) expressed on leukocyte cell membranes. Activation of GPCRs triggers leukocyte activation and guides their recruitment to the site of infection. Therefore, GPCRs play a central role in leukocyte trafficking leading to microbial clearance. It is therefore not surprising that microorganisms are able to sabotage this arm of the immune response. Different microorganisms have evolved a variety of tactics to modulate GPCR activation. Here, we review the mechanisms and proteins used by major human pathogens and less virulent microorganisms that affect GPCR signaling. While viruses generally produce receptor and chemoattractant mimics, parasites and bacteria such as Staphylococcus aureus, Streptococcus pyogenes, Porphyromonas gingivalis, and Bordetella pertussis secrete proteins that affect receptor signaling, directly antagonize receptors, cleave stimuli, and even prevent stimulus generation. As the large arsenal of GPCR modulators aids prolonged microbial persistence in the host, their study provides us a better understanding of microbial pathogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources