Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons
- PMID: 19935647
- DOI: 10.1038/nnano.2009.348
Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons
Abstract
The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic-plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.
Similar articles
-
Enhanced subwavelength coupling and nano-focusing with optical fiber-plasmonic hybrid probe.Opt Express. 2019 Dec 23;27(26):38098-38108. doi: 10.1364/OE.27.038098. Opt Express. 2019. PMID: 31878581
-
Toward High-Contrast Atomic Force Microscopy-Tip-Enhanced Raman Spectroscopy Imaging: Nanoantenna-Mediated Remote-Excitation on Sharp-Tip Silver Nanowire Probes.Nano Lett. 2019 Jan 9;19(1):100-107. doi: 10.1021/acs.nanolett.8b03399. Epub 2018 Dec 12. Nano Lett. 2019. PMID: 30512954
-
Tip enhanced Raman scattering with adiabatic plasmon focusing tips.Micron. 2011 Jun;42(4):313-7. doi: 10.1016/j.micron.2010.05.017. Epub 2010 Sep 16. Micron. 2011. PMID: 20952200
-
Single-molecule imaging of cell surfaces using near-field nanoscopy.Acc Chem Res. 2012 Mar 20;45(3):327-36. doi: 10.1021/ar2001167. Epub 2011 Oct 12. Acc Chem Res. 2012. PMID: 21992025 Review.
-
Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review.Angew Chem Int Ed Engl. 2013 Jun 3;52(23):5940-54. doi: 10.1002/anie.201203849. Epub 2013 Apr 22. Angew Chem Int Ed Engl. 2013. PMID: 23610002 Review.
Cited by
-
Plasmonic Bowl-Shaped Nanopore for Raman Detection of Single DNA Molecules in Flow-Through.Nano Lett. 2023 Jun 14;23(11):4830-4836. doi: 10.1021/acs.nanolett.3c00340. Epub 2023 Jun 1. Nano Lett. 2023. PMID: 37260351 Free PMC article.
-
Ligand Size and Carbon-Chain Length Study of Silver Carboxylates in Focused Electron-Beam-Induced Deposition.Nanomaterials (Basel). 2023 Apr 29;13(9):1516. doi: 10.3390/nano13091516. Nanomaterials (Basel). 2023. PMID: 37177061 Free PMC article.
-
Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications.Nanoscale Adv. 2021 Jun 15;3(15):4349-4369. doi: 10.1039/d1na00237f. eCollection 2021 Jul 27. Nanoscale Adv. 2021. PMID: 36133477 Free PMC article. Review.
-
Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity.Materials (Basel). 2021 Nov 30;14(23):7330. doi: 10.3390/ma14237330. Materials (Basel). 2021. PMID: 34885484 Free PMC article.
-
Temperature-Induced Plasmon Excitations for the α-T3 Lattice in Perpendicular Magnetic Field.Nanomaterials (Basel). 2021 Jun 29;11(7):1720. doi: 10.3390/nano11071720. Nanomaterials (Basel). 2021. PMID: 34210076 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources