iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/19244159/
Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22 - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 23;113(17):4008-10.
doi: 10.1182/blood-2008-12-192443. Epub 2009 Feb 24.

Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22

Affiliations

Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22

Tiffany Hughes et al. Blood. .

Abstract

Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56(+)NKp44(+)NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22(-) when resting, with a minor fraction of this population becoming IL-22(+) when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a T(H)17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34(-)CD117(+)CD161(+)CD94(-), largely lack expression of NKp44 and CD56, and do not produce IFN-gamma or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F.

PubMed Disclaimer

Figures

Figure 1
Figure 1
IL-22 mRNA and protein expression during NK development. (A) (Left) Quantitative (Q) RT-PCR analysis of IL-22 expression was performed on fluorescence-activated cell sorting (FACS)–sorted NK stages 1 through 4 from human tonsil after pooling mRNA of each purified stage from 6 to 7 donors to achieve sufficient quantities for cDNA synthesis. Relative quantification was performed using the ΔΔCt method, and gene expression levels were normalized to 18S mRNA. Y-axis indicates fold increase over level of IL-22 mRNA quantified in stage 4 NK cells, arbitrarily normalized to 1. IL-22 was virtually absent from stages 1 and 2, so (right) subsequent RT-PCR measurements were performed using stage 3 iNK and stage 4 NK cells using cDNA from 7 individual donors. The average fold change in IL-22 mRNA present in stage 3 iNK cells compared with stage 4 NK cells is approximately 138. Error bars represent standard error of the mean from n = 7 donors. *P = .001. (B) IL-22 intracellular protein expression during NK development. Total CD3CD19CD34 tonsillar mononuclear cells were stained for surface expression of lineage markers, CD117 and CD94, followed by assessment for intracellular expression of IL-22 protein. LinCD117+CD94 identify stage 3 iNK cells that are then stained for intracellular expression of IL-22 (shaded) as shown in this representative donor, compared with isotype control (clear). LinCD117CD94+ identify stage 4 NK cells that are then stained for intracellular expression of IL-22 (shaded) as shown in this representative donor, compared with isotype control (clear). (C) The average proportion of IL-22+ stage 3 iNK cells versus stage 4 NK cells in all donors examined (n = 6). Error bars represent standard error of the mean. *P = .001.
Figure 2
Figure 2
Surface phenotype of IL-22+ stage 3 iNK cells. Total CD3CD19CD34 resting tonsillar mononuclear cells were stained for surface expression of lineage markers, CD117, CD94, followed by intracellular expression of IL-22, and events were gated on total LinCD117+CD94IL-22+ stage 3 iNK cells. (A) Representative histograms show expression for each indicated surface marker (shaded) in a donor, compared with isotype control (clear). (B) Graphic summary of the mean proportion of IL-22+ stage 3 iNK cells expressing various surface markers from all (n = 4) donors is summarized. Error bars represent standard error of the mean.

Similar articles

Cited by

References

    1. Freud AG, Becknell B, Roychowdhury S, et al. A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity. 2005;22:295–304. - PubMed
    1. Freud AG, Yokohama A, Becknell B, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med. 2006;203:1033–1043. - PMC - PubMed
    1. Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–725. - PMC - PubMed
    1. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–2279. - PMC - PubMed
    1. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity. 2004;21:241–254. - PubMed