iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/18518404
Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May 9;100(18):186804.
doi: 10.1103/PhysRevLett.100.186804. Epub 2008 May 6.

Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range

Affiliations

Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range

Maurizio Righini et al. Phys Rev Lett. .

Abstract

We present a quantitative analysis of 2D surface plasmon based optical tweezers able to trap microcolloids at a patterned metal surface under low laser intensity. Photonic force microscopy is used to assess the properties of surface plasmon traps, such as confinement and stiffness, revealing stable trapping with forces in the range of a few tens of femtonewtons. We also investigate the specificities of surface plasmon tweezers with respect to conventional 3D tweezers responsible for their selectivity to the trapped specimen's size. The accurate engineering of the trapping properties through the adjustment of the illumination parameters opens new perspectives in the realization of future optically driven on-a-chip devices.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources