iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/18159241
The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 26;2(12):e1358.
doi: 10.1371/journal.pone.0001358.

The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri

Affiliations

The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri

William G Miller et al. PLoS One. .

Abstract

Background: Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018.

Methodology/principal findings: Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains.

Conclusion/significance: The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Genome BLAST atlas of the A. butzleri strain RM4018.
Arcobacter butzleri strain RM4018 is the reference genome and is compared to a set of 15 other epsilonproteobacterial genomes, including different Campylobacter (rings 7–14 from center) and Helicobacter (rings 15–17 from center) strains, as well as the UniProt database (outermost ring in black). A web-based “zoomable atlas” can be found at .
Figure 2
Figure 2. Sulfur assimilation and biosynthesis of the sulfur-containing amino acids.
Genes/proteins in strain RM4018 unique within Campylobacteraceae or proteins with Campylobacteraceae orthologs of low similarity are labeled/shaded in blue.
Figure 3
Figure 3. Predicted TCA, methylcitrate and citramalate cycles of A. butzleri strain RM4018.
Genes unique within the Campylobacteraceae are labeled in green. Genes in parentheses encode multi-subunit proteins or a protein and its cognate accessory protein. 1: pyruvate dehydrogenase; 2: L-lactate dehydrogenase; 3: phosphate transacetylase; 4: acetate kinase; 5: citrate synthase; 6: aconitase; 7: isocitrate dehydrogenase; 8: 2-oxoglutarate:acceptor oxidoreductase; 9: fumarate reductase; 10: fumarase; 11: malate dehydrogenase; 12: malate:quinone oxidoreductase; 13: 2-methylcitrate synthase; 14: 2-methylcitrate dehydratase; 15: aconitase; 16: 2-methylisocitrate lyase; 17: malic enzyme; 18: malyl-CoA hydrolase; 19: malyl-CoA lyase; 20: β-methylmalyl-CoA lyase; 21: mesaconyl-CoA hydratase; 22: mesaconyl-CoA synthetase; 23: citramalate hydrolase; 24: citramalate lyase.
Figure 4
Figure 4. Respiratory pathways in A. butzleri strain RM4018.
Transfer of electrons to the menaquinone (MQ) pool is represented by blue arrows; transfer of electrons from the menaquinone pool is represented by red arrows. b- and c-type cytochromes are shaded yellow. Genes unique within the Campylobacteraceae are labeled in green. NADH:Q OR: NADH:quinone oxidoreductase; M:Q OR: malate:quinone oxidoreductase; FormDH: formate dehydrogenase; LacDH: L-lactate dehydrogenase; SulfDH: sulfur dehydrogenase; Ubi cyt c OR: Ubiquinol cytochrome c oxidoreductase; TMAO RD: TMAO reductase; NO3RD: nitrate reductase; NO2RD: nitrite reductase; FumRD: fumarate reductase; QHAmDH: quinohemoprotein amine dehydrogenase; AldDH: aldehyde dehydrogenase; PX: peroxidase; CTQ: cysteine tryptophylquinone.
Figure 5
Figure 5. Phylogenetic analysis of four representative flagellar proteins and flagellar clustering in strain RM4018.
A. Each dendrogram was constructed using the neighbor-joining algorithm and the Kimura two-parameter distance estimation method. Bootstrap values of >75%, generated from 500 replicates, are shown at the nodes. The scale bar represents substitutions per site. Cjj: Campylobacter jejuni subsp. jejuni; Cjd: C. jejuni subsp. doylei; Cc: C. coli; Cu: C. upsaliensis; Cl: C. lari; Cff: C. fetus subsp. fetus; Ccur: C. curvus; Ccon: C. concisus; Ab: A. butzleri; Ws: W. succinogenes; Sd: S. denitrificans; Hh: H. hepaticus; Hac: H. acinonychis; Hp: H. pylori; Nit: Nitratiruptor sp.; Ec: Escherichia coli. B. Location of the flagellar genes of C. jejuni strain RM1221 and A. butzleri strain RM4018.

Similar articles

Cited by

References

    1. Skirrow MB, Blaser MJ. Clinical aspects of Campylobacter infection. In: Nachamkin I, Blaser MJ, editors. Campylobacter. 2nd ed. ed. Washington, DC: ASM Press; 2000. pp. 69–88.
    1. Marshall B. One hundred years of discovery and rediscovery of Helicobacter pylori and its association with peptic ulcer disease. In: Mobley HL, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and genetics. Washington, DC: ASM Press; 2001. pp. 19–24. - PubMed
    1. Sandstedt K, Ursing J, Walder M. Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs. Curr Microbiol. 1983;8:209–213.
    1. Fox JG, Cabot EB, Taylor NS, Laraway R. Gastric colonization by Campylobacter pylori subsp. mustelae in ferrets. Infect Immun. 1988;56:2994–2996. - PMC - PubMed
    1. Vandamme P. Taxonomy of the Family Campylobacteraceae. . In: Nachamkin I, Blaser MJ, editors. Campylobacter. Washington, DC: ASM Press; 2000. pp. 3–26.

Publication types

LinkOut - more resources